/*
Copyright (c) 2008 Howard Hinnant

Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)


A prototype of a proposal for a time/duration/clock library for the C++ standard.
It is intended that this be a solid foundation upon which higher level libraries
can be based.  Examples of such libraries include a date/time library and a
physical quantities library.

Two general purpose facilities are proposed:

    common_type
    ratio

And 5 time/duration/clock facilities are proposed

    duration
    time_point
    system_clock
    monotonic_clock        // optional
    high_resolution_clock  // optional

Much thanks to Andrei Alexandrescu,
               Walter Brown,
               Peter Dimov,
               Jeff Garland,
               Terry Golubiewski,
               Daniel Krügler,
               Anthony Williams.

Synopsis

namespace std
{

// <type_traits>

// common_type

// common_type is ageneral purpose trait that can be specialized for user-defined types.
// The semantics are intended to be identical to finding the resulting type of a
// the conditional operator.
// The client may need to specialize common_type if he wishes to convert to or from
// another type only explicitly.  It is used to determine the result type
// in "mixed-mode" duration and time_point arithmetic.  It will also find use in
// similar "mixed-mode" arithmetic applications.

template <class T, class U>
struct common_type
{
private:
    static T t();
    static U u();
public:
    typedef decltype(true ? t() : u()) type;
};

// or...

template <class ...T> struct common_type;

template <class T>
struct common_type<T>
{
    typedef T type;
};

template <class T, class U>
struct common_type<T, U>
{
private:
    static T t();
    static U u();
public:
    typedef decltype(true ? t() : u()) type;
};

template <class T, class U, class ...V>
struct common_type<T, U, V...>
{
    typedef typename common_type<typename common_type<T, U>::type, V...>::type type;
};

// This alternative variadic formulation of common_type has some advantages:
//
//   1.  The obvious advantage is that it can handle 3 or more arguments seamlessly.
//       This can come in handy when writing template functions that take more than
//       two arguments, such as fma(x, y, z).
//
//   2.  We could just get rid of identity (avoiding the legacy conflict) and use
//       common_type<T>::type in the one place we use identity<T>::type today.
//
//   3.  For clients that need to specialize common_type (such as duration and time_point),
//       the client still needs to specialize only the two-argument version.  The default
//       definition of the higher-order common_type will automatically use the client's
//       specialized two-argument version.
//       For example:
//           common_type<duration<double>, hours, microseconds>::type is duration<double, micro>

// ... end or

//  The cost of not including either version of common_type is that it is very likely that
//  the implementation would include it anyway, but spell it __common_type instead.  This
//  would prevent authors of arithmetic emulators from using their classes as representations
//  with durations unless the emulator had exactly one implicit conversion to or from an
//  arithmetic type.  This would be a large loss of functionality from the client's point
//  of view, possibly mandating a less safe interface for the client's arithmetic emulator.

// ratio

// ratio is a general purpose type allowing one to easily and safely compute integral
// ratio values at compile time.  The ratio class catches all errors (such as divide by
// zero and overflow) at compile time.  It is used in the duration and time_point libraries
// to efficiently create units of time.  It can also be used in other "quantity"
// libraries (both std-defined and user-defined), or anywhere there is an integral
// ratio which is known at compile time.  The use of this utility can greatly reduce
// the chances of run time overflow because the ratio (and any ratios resulting from
// ratio arithmetic) are always reduced to lowest terms.

// The cost of not including ratio would mean that the implementor would likely have this
// functionality anyway, but spell it __ratio instead.  This would prevent the client from
// using ratio in his own code as demonstrated in the "User1" example.  Furthermore duration
// would have to be templated on two long long's instead of on ratio like so:
//
//       template <class Rep, long long N, long long D> duration.
//
// This would mean that clients wanting to build a custom duration type (say a nanosecond
// represented by a double) would have to write:
//
//       duration<double, 1, 1000000000LL>
//
// instead of:
//
//       duration<double, nano>
//
// This lack of syntatic niceness, along with the loss of functionality in the reuse of
// ratio in user-written code seems to indicate that the loss of ratio would be a sizeable
// loss to client code.

template <intmax_t N, intmax_t D = 1>
class ratio
{
    // For every possible value of N and D, abs(N) >= 0 and abs(D) > 0
    static_assert(__static_abs<N>::value >= 0, "ratio numerator is out of range");
    static_assert(__static_abs<D>::value >  0, "ratio denominator is out of range");
public:
    static const intmax_t num;   // Reduced by greatest common divisor of N and D, has sign of sign(N) * sign(D)
    static const intmax_t den;   // Reduced by greatest common divisor of N and D, always positive
                                 // When num == 0, den == 1
};

// The static_asserts in ratio are there to catch any values which have a negative absolute value.
// In a typical 2's complement representation this is only LLONG_MIN.  The reason for prohibiting
// this value is because ratio must take the absolute values of its arguments and generally depends
// on that number being non-negative in order to maintain invariants such as den > 0.

// convenience typedefs

typedef ratio<1, 1000000000000000000000000> yocto;  // conditionally supported
typedef ratio<1,    1000000000000000000000> zepto;  // conditionally supported
typedef ratio<1,       1000000000000000000> atto;
typedef ratio<1,          1000000000000000> femto;
typedef ratio<1,             1000000000000> pico;
typedef ratio<1,                1000000000> nano;
typedef ratio<1,                   1000000> micro;
typedef ratio<1,                      1000> milli;
typedef ratio<1,                       100> centi;
typedef ratio<1,                        10> deci;
typedef ratio<                       10, 1> deca;
typedef ratio<                      100, 1> hecto;
typedef ratio<                     1000, 1> kilo;
typedef ratio<                  1000000, 1> mega;
typedef ratio<               1000000000, 1> giga;
typedef ratio<            1000000000000, 1> tera;
typedef ratio<         1000000000000000, 1> peta;
typedef ratio<      1000000000000000000, 1> exa;
typedef ratio<   1000000000000000000000, 1> zetta;  // conditionally supported
typedef ratio<1000000000000000000000000, 1> yotta;  // conditionally supported

// Compile time arithmetic and comparisons should either avoid overflow or not compile

template <class R1, class R2>
requires R1 and R2 are instantiations of ratio
struct ratio_add
{
    typedef ratio<pseudo code: R1 + R2> type;
};

template <class R1, class R2>
requires R1 and R2 are instantiations of ratio
struct ratio_subtract
{
    typedef ratio<pseudo code: R1 - R2> type;
};

template <class R1, class R2>
requires R1 and R2 are instantiations of ratio
struct ratio_multiply
{
    typedef ratio<pseudo code: R1 * R2> type;
};

template <class R1, class R2>
requires R1 and R2 are instantiations of ratio
struct ratio_divide
{
    typedef ratio<pseudo code: R1 / R2> type;
};

template <class R1, class R2>
requires R1 and R2 are instantiations of ratio
struct ratio_equal
    : public integral_constant<bool, pseudo code: R1 == R2> {};

template <class R1, class R2>
requires R1 and R2 are instantiations of ratio
struct ratio_not_equal
    : public integral_constant<bool, !ratio_equal<R1, R2>::value> {};

template <class R1, class R2>
requires R1 and R2 are instantiations of ratio
struct ratio_less
    : public integral_constant<bool, pseudo code: R1 < R2> {};

template <class R1, class R2>
requires R1 and R2 are instantiations of ratio
struct ratio_less_equal
    : public integral_constant<bool, !ratio_less<R2, R1>::value> {};

template <class R1, class R2>
requires R1 and R2 are instantiations of ratio
struct ratio_greater
    : public integral_constant<bool, ratio_less<R2, R1>::value> {};

template <class R1, class R2>
requires R1 and R2 are instantiations of ratio
struct ratio_greater_equal
    : public integral_constant<bool, !ratio_less<R1, R2>::value> {};

namespace datetime
{

// duration customization traits

//   Authors of arithmetic emulation types should specialize treat_as_floating_point
//   if their class emulates floating point and they want to use it as a duration's
//   representation.

template <class Rep> struct treat_as_floating_point
  : is_floating_point<Rep> {};

//   Authors of arithmetic emulation types should specialize duration_values
//   if they want to use it as a duration's  representation, and the default
//   definition of duration_values does not have the correct behavior.

template <class Rep>
struct duration_values
{
public:
    static constexpr Rep zero() {return Rep(0);}
    static constexpr Rep max()  {return numeric_limits<Rep>::max();}
    static constexpr Rep min()  {return -max();}
};

// Note:  Rep(0) instead of Rep() is used for zero() because the author of Rep may
//   chose to have Rep() refer to an inderminant or unitialized value.

// duration

// A duration has a representation and a period.
// 
//    The representation is an arithmetic type, or a class emulating an arithmetic type.
//
//    The period is the rational number of seconds between "ticks" of the duration.  The
//       duration simply holds a count of the elapsed number of ticks (using the
//       representation), and that is related to seconds by multiplying by the period.
//       Note, this multiplication is only required when one needs to convert between
//       durations with different tick periods (e.g. milliseconds to microseconds).
// 
//    A duration has defalt construction and default copy semantics.  One can also explicitly
//       construct a duration from its representation or something implicitly convertible to
//       its representation.  If the representation is integral (or emulated integral) the
//       duration may not be constructed from a floating point (or emulated floating point)
//       type, even if that type is impilcitly convertible to the representation (the client
//       must explicitly convert such an argument as they pass it to the constructor if such
//       a conversion is desired).
// 
//    A duration may be implicitly constructible from another duration if the representations
//       of the two durations meet certain requirements.  Let the representation of this duration
//       be Rep1 and the representation of the other duration be Rep2.  Example representations
//       include int, long long, double, or a user-defined class which emulates one of these
//       arithmetic types.  To qualify for implicit constructability Rep1 must be explicitly
//       constructible from Rep2.  Note that implicit constructibility of Rep1 from Rep2 is not
//       required for this implicit construction between durations.  Additionally the trait
//       common_type<Rep1, Rep2>::type must be well defined.  If a conditional expression involving
//       these two types isn't valid, there must exist a common_type specialization which makes
//       the trait valid.
//       
//       The requirements put on the relationship between Rep1 and Rep2 are intended to be minimal,
//       and not require implicit conversions (which could be considered error prone by the author
//       of either of these representations).
//       
//       In addition to the above relationship between the representations, implicit constructability
//       also depends on whether the representation is considered floating point (or emulated floating
//       point) or integral (or emulated integral).
// 
//       If a duration has a floating point (or emulated floating point) representation it
//       is implicitly constructible from all other durations of any period (as long as
//       the representations are compatible as described above).
//       
//       If a duration has an integral (or emulated integral) representation it is implicitly
//       constructible from other integral-based durations which have a period which will exactly convert
//       to the period of this duration with no truncation error.  More specifically, if the
//       period of this duration is P1, and the period of the other duration is P2, this
//       duration is implicitly constructible from the other duration if P2/P1 is a whole number
//       (as long as the representations are compatible as described above).  Example:
//       microseconds has a period p1 = 1/1000000 seconds.  milliseconds has a period
//       P2 = 1/1000 seconds.  P2/P1 is (1/1000)/(1/1000000) = 1000000/1000 = 1000.
//       Therefore microseconds will implicitly construct from milliseconds (but not vice-versa).
//
//       These rules involving integral representations are meant to prevent accidental truncatation
//       error.  If truncation error is desired, a duration_cast facility is available to force it.
//       Example:
//          milliseconds ms(3);                    // ok, ms.count() == 3,    which is 0.003    seconds
//          microseconds us = ms;                  // ok, us.count() == 3000  which is 0.003000 seconds
//          ++us;                                  // ok, us.count() == 3001  which is 0.003001 seconds
//          ms = us;                               // won't compile, might truncate
//          ms = duration_cast<milliseconds>(us);  // ok, ms.count() = 3, truncated a microsecond
// 
//    A duration has a single observer:  rep count() const; which returns the stored
//       representation which holds the number of elapsed "ticks".
// 
//    A duration supports the following member arithmetic:
// 
//       duration  operator+() const;
//       duration  operator-() const;
//       duration& operator++();
//       duration  operator++(int);
//       duration& operator--();
//       duration  operator--(int);
//       
//       duration& operator+=(duration d);
//       duration& operator-=(duration d);
//       
//       duration& operator*=(rep rhs);
//       duration& operator/=(rep rhs);
//
//       The arithmetic simply manipulates the "tick" count in the obvious way (e.g. operator++
//       increments the tick count by 1).
// 
//    A duration supports the following non-member arithmetic.
//       Let D1 represent duration<Rep1, Period1> and D2 represent duration<Rep2, Period2>.
// 
//       common_type<D1, D2>::type                             operator+(  D1,   D2); // returns a duration
//       common_type<D1, D2>::type                             operator-(  D1,   D2); // returns a duration
//       duration<common_type<D1::rep,Rep2>::type, D1::period> operator*(  D1, Rep2); // returns a duration
//       duration<common_type<D1::rep,Rep2>::type, D1::period> operator*(Rep2,   D1); // returns a duration
//       duration<common_type<D1::rep,Rep2>::type, D1::period> operator/(  D1, Rep2); // returns a duration
//       common_type<D1::rep, D2::rep>::type                   operator/(  D1,   D2); // returns a scalar
// 
//    A duration D1 is fully equality and less-than comparable with any other duration D2, as
//       long as common_type<D1::rep, D2::rep> is well defined.
//       Example:
//          milliseconds ms(3);    // ms.count() == 3,    which is 0.003    seconds
//          microseconds us = ms;  // us.count() == 3000  which is 0.003000 seconds
//          --us;                  // us.count() == 2999  which is 0.002999 seconds
//          assert(ms != us);      // 3 milliseconds is not equal to 2999 microseconds
//          assert(ms >  us);      // 3 milliseconds is greater than 2999 microseconds
//          ++us;                  // us.count() == 3000  which is 0.003000 seconds
//          assert(ms == us);      // 3 milliseconds is equal to 3000 microseconds
//
//    Durations based on floating point representations are subject to round off error precisely the
//       same way their representations are.
// 
//    Arithmetic and comparisons among integral-based durations is not subject to truncation error or
//       round off error.  If truncation error would result from the arithmetic (say
//       by converting a smaller period duration to a larger one) the expression will
//       not compile (unless duration_cast is used).  If one performs arithmetic
//       involving the duration's representation (such as division), then truncation
//       will happen implicitly.
//    
//    Overflow error may silently happen with a duration.  The std-defined durations
//       have a minimum range of +/- 292 years.
// 
//    A duration is a thin wrapper around its representation.  sizeof(duration<Rep, Period>) == sizeof(Rep).
// 
//    A duration can represent units as small as 10^-18 seconds (attoseconds) and as large as 10^18 seconds
//       (about 30 billion years).  The range of a duration is based on the range of its representation
//       combined with its period.

// The cost of not including the flexibility to represent different "tick periods" in the duration
// type would be a great loss of both flexibility, convenience and safety for the client.  For example
// if had just one duration type which counted nanoseconds (no matter how that count was represented),
// then clients could never have the ability to traffic in picoseconds.  And the only hope of reaching
// beyond a +/- 292 year range with nanoseconds is to increase the number of bits in the representation
// (such as a long long).  Furthermore, if the client wanted to traffic in units larger than a nanosecond
// (e.g. seconds) for convience, they would likely need to set up their own conversion constants and
// convert manually.
//
// If the conversion constants are specified at run time, rather than as compile time integral constants,
// then the client suffers a significant performance penalty as for every conversion one will have to
// perform both a multiplication and a division.  In contrast, when converting among any two units of
// the set (hours, minutes, seconds, milliseconds, microseconds, nanoseconds), there need be only a
// single multiplication *or* division (never both).  This proposal makes every unit conversion as
// efficient as if it had been coded by hand (see duration_cast).  Furthermore duration_cast encapsulates
// all unit conversions within a single uniform-syntax function which is easily used in generic code.  There
// is no need (or motivation) to set up a "hub-and-spoke" conversion regimen, so that the number of conversion
// functions is O(N) rather than O(N^2).

template <class Rep, class Period = ratio<1>>
requires Rep is an arithmetic type, or a class emulating an arithmetic type,
         and not an instantiation of duration
requires Period is an instantiation of ratio and represents a positive fraction
class duration
{
public:
    typedef Rep    rep;
    typedef Period period;
private:
    rep rep_;  // exposition only
public:
    // construction / destruction
    duration() = default;
    template <class Rep2>
        requires is_convertible<Rep2, rep>::value &&
                 (treat_as_floating_point<rep>::value ||
                 !treat_as_floating_point<rep>::value && !treat_as_floating_point<Rep2>::value)
        explicit duration(const Rep2& r);
    ~duration() = default;

    // copy semantics
    duration(const duration&) = default;
    duration& operator=(const duration&) = default;

    // conversions
    template <class Rep2, class Period2>
       requires Rep2 is explicitly convertible to rep &&
                (treat_as_floating_point<rep>::value ||
                !treat_as_floating_point<Rep2>::value && ratio_divide<Period2, period>::type::den == 1)
       duration(const duration<Rep2, Period2>& d);

    // observer

    rep count() const;

    // arithmetic

    duration  operator+() const;
    duration  operator-() const;
    duration& operator++();
    duration  operator++(int);
    duration& operator--();
    duration  operator--(int);

    duration& operator+=(const duration& d);
    duration& operator-=(const duration& d);

    duration& operator*=(const rep& rhs);
    duration& operator/=(const rep& rhs);

    // special values

    static constexpr duration zero();
    static constexpr duration min();
    static constexpr duration max();
};

// convenience typedefs

typedef duration<int_least64_t,        nano> nanoseconds;    // 10^-9 seconds
typedef duration<int_least55_t,       micro> microseconds;   // 10^-6 seconds
typedef duration<int_least45_t,       milli> milliseconds;   // 10^-3 seconds
typedef duration<int_least35_t             > seconds;        //     1 second
typedef duration<int_least29_t, ratio<  60>> minutes;        //    60 seconds
typedef duration<int_least23_t, ratio<3600>> hours;          //  3600 seconds

//   duration_cast can be used to force a conversion between two durations (assuming
//     the source representation can be explicitly converted to the target representation).
//     Not all integral-based durations are implicitly convertible to another (to
//     avoid accidental truncation error).  When truncation error is desired, the client
//     uses duration_cast to explicitly request the non-exact conversion.  When
//     duration_cast is used to convert between durations which have an implicit conversion,
//     the behavior and performance of the conversion using duration_cast is identical to
//     that of the implicit conversion.

template <class ToDuration, class Rep, class Period>
  requires ToDuration is an instantiation of duration
  ToDuration duration_cast(const duration<Rep, Period>& fd);

//    Examples:
//      microseconds us(3500);                              // 3500 microseconds
//      milliseconds ms = us;                               // Does not compile (implicit truncation)
//      milliseconds ms = duration_cast<milliseconds>(us);  // 3 milliseconds   (explicit truncation)
//      us = ms;                                            // 3000 microseconds
//      us = duration_cast<microseconds>(ms);               // 3000 microseconds

}  // datetime

//   Given two durations:  duration<Rep1, Period1> and duration<Rep2, Period2>, the common_type
//     of those two durations is a duration with a representation of common_type<Rep1, Rep2>,
//     and a period which is the "greatest common period" of Period1 and Period2.  The GCP
//     (Greatest Common Period) of Period1 and Period2 is the largest period which will divide
//     both Period1 and Period2 evenly (and is often equivalent to the minimum of Period1 and
//     Period2).  This can be computed (by the implementation at compile time) by
//     GCD(Period1::num, Period2::num) / LCM(Period1::den, Period2::den) where GCD is
//     "Greatest Common Divisor" and LCM is "Least Common Multiple".

template <class Rep1, class Period1, class Rep2, class Period2>
struct common_type<datetime::duration<Rep1, Period1>, datetime::duration<Rep2, Period2> >
{
    typedef datetime::duration<typename common_type<Rep1, Rep2>::type,
                       ratio<GCD(Period1::num, Period2::num), LCM(Period1::den, Period2::den)>> type;
};

// Note:  For any two durations D1 and D2, they will both exactly convert to common_type<D1, D2>::type.
//   common_type<D1, D2>::type will have the largest possible period to make this possible, and
//   may be the same type as D1 or D2.  Examples:
//        common_type<minutes,      microseconds>::type is microseconds.
//        common_type<milliseconds, microseconds>::type is microseconds.
//        common_type<nanoseconds,  microseconds>::type is nanoseconds.
//
//    A more complex example:
//        common_type< duration<long, milli>, duration<int, ratio<1,30>> >::type is
//        duration<long, ratio<1,3000>>.  And both duration<long, milli> and 
//        duration<int, ratio<1,30>> will exactly convert to duration<long, ratio<1,3000>>.
//        The former multitplies its representation by 3L and the latter converts its
//        representation to long and multiplies that result by 1000L.  There exists no
//        duration with a larger period such that both duration<long, milli> and
//        duration<int, ratio<1,30>> will exactly convert to it.

namespace datetime {

template <class Rep1, class Period1, class Rep2, class Period2>
   bool operator==(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);
template <class Rep1, class Period1, class Rep2, class Period2>
   bool operator!=(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);
template <class Rep1, class Period1, class Rep2, class Period2>
   bool operator< (const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);
template <class Rep1, class Period1, class Rep2, class Period2>
   bool operator<=(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);
template <class Rep1, class Period1, class Rep2, class Period2>
   bool operator> (const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);
template <class Rep1, class Period1, class Rep2, class Period2>
   bool operator>=(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period1, class Rep2, class Period2>
  typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2> >::type
  operator+(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period1, class Rep2, class Period2>
  typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2> >::type
  operator-(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period, class Rep2>
  requires Constructible<Rep1, typename common_type<Rep1, Rep2>::type>::value> &&
           Constructible<Rep2, typename common_type<Rep1, Rep2>::type>::value>
  duration<typename common_type<Rep1, Rep2>::type, Period>
  operator*(const duration<Rep, Period>& d, const Rep2& s);

template <class Rep1, class Period, class Rep2>
  requires Constructible<Rep1, typename common_type<Rep1, Rep2>::type>::value> &&
           Constructible<Rep2, typename common_type<Rep1, Rep2>::type>::value>
  duration<typename common_type<Rep1, Rep2>::type, Period>
  operator*(const Rep2& s, const duration<Rep, Period>& d);

template <class Rep1, class Period, class Rep2>
  requires Rep2 is not a duration &&
           Constructible<Rep1, typename common_type<Rep1, Rep2>::type>::value> &&
           Constructible<Rep2, typename common_type<Rep1, Rep2>::type>::value>
  duration<typename common_type<Rep1, Rep2>::type, Period>
  operator/(const duration<Rep, Period>& d, const Rep2& s);

// Note: the above 3 signatures can be approximated with is_convertible if concepts do not
//   make it into the language.  Requiring only *explicit* convertibility between the Rep
//   types is strongly desired.  One way or another, Rep2 must be constrained.  Otherwise
//   the operators are overly generic.

template <class Rep1, class Period1, class Rep2, class Period2>
  typename common_type<Rep1, Rep2>::type
  operator/(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

// time_point

// A time_point represents an epoch plus or minus a duration.  The relationship between a time_point
//    which represents "now" and the time_point's epoch is obtained via a clock.  Each time_point is
//    tied to a specific clock.  Thus, for any time_point, one can find the duration between that
//    point in time and now, and between that point in time, and its epoch.
// 
//    A time_point may be default constructed.  This time_point represents the epoch.  time_point has
//       default copy semantics.
//    
//       time_point may be explicitly constructed by a duration having the same representation and period as
//       the time_point.  Any other duration which is implicitly convertible to the time_point's "native" duration can
//       also be used to explicitly construct the time_point.  The meaning of this construction is identical to
//       time_point() + d.
//
//       A time_point is implicitly constructible from another time_point if they share the same clock,
//       and the duration of this time_point is implicitly constructible from the duration of the other
//       time_point.  A time_point constructed in this fashion will compare equal to the source time_point
//       after the construction.
//    
//    A time_point supports the following member arithmetic:
// 
//       time_point& operator+=(duration d);
//       time_point& operator-=(duration d);
// 
//    A time_point supports the following non-member arithmetic.
//       Let T1 represent time_point<Clock, Duration1>,
//       T2 represent time_point<Clock, Duration2>,
//       and D represent duration<Rep3, Period3>.  Note that T1 and T2 must have the same Clock.
//       Attempts to interoperate times having different clocks results in a compile time failure.
// 
//       T2 operator+(T1,  D);  // return type is a time_point
//       T2 operator+( D, T1);  // return type is a time_point
//       T2 operator-(T1,  D);  // return type is a time_point
//       D  operator-(T1, T2);  // return type is a duration
// 
//    A time_point T1 is fully equality and less-than comparable with any other time_point T2 which
//       has the same clock, and for which their durations are comparable.
// 
//    Times based on floating point representations are subject to round off error precisely the
//       same way their representations are.
// 
//    Times based on integral representations are not subject to truncation error or round off
//       error.  A compile time error will result if truncation error is possible.  Truncation error
//       is only possible with construction or the member arithmetic (and won't compile).  Non-member
//       arithmetic and comparison is always exact.  Overflow error with integral based times remains a
//       possibility.
// 
//    A time_point is a thin wrapper around its representation.
//        sizeof(time_point<Clock, Duration>) == sizeof(Duration) == sizeof(Duration::rep).
// 
//    A time_point can represent units as small as 10^-18 seconds and as large as 10^18 seconds.  The range
//       of a time_point is based on the range of its representation combined with its period.
//
//    Because no two clocks report the exact same time, even clocks which nominally have the same
//       epoch, are considered by this framework to have different epochs, if only by a few nanoseconds.
//       Converting time_points from one clock to another will involve synchronization of the clocks,
//       which can be viewed as a synchronization of their epochs.  Such synchronization is clock specific
//       and beyond the scope of this API.  A future API, or a platform specific API, can easily
//       write such a synchronization API, basing it on this API.

// The cost of not including a time_point class is the lack of the ability to safely interact with
// the concept of "epoch + duration".  Without a separate type, the client is in danger of accidently
// writing code that boils down to "epoch1 + duration1" + "epoch2 + duration2".  Algebraically this
// results in epoch1+epoch2 as a subexpression which is likely to be completely without meaning.  What
// would it mean to add New Years 1970 to the point in time at which your computer booted up?  Or for
// that matter, what is the meaning of "New Years 1970" + "New Years 1970"?
//
// Additionally this would force the duration type to play double duty as a time_point leading to
// client confusion.  For example POSIX has timespec represent a duration in nanosleep, and yet the
// same type is used as a time_point in pthread_cond_timedwait and pthread_mutex_timedlock.  The
// confusion seems even more likely with a function such as clock_nanosleep where timespec can mean
// either a duration or a time_point depending upon another argument to the function.
//
// In C++ we can easily mitigate such errors by detecting them at compile time.  This is done through
// the use of distinct types for these distinct concepts (even though both types have identical layout!).

template <class Clock, class Duration = typename Clock::duration>
requires Duration is an instantiation of duration
class time_point
{
public:
    typedef Clock                     clock;
    typedef Duration                  duration;
    typedef typename duration::rep    rep;
    typedef typename duration::period period;
private:
    duration d_;  // exposition only

public:
    time_point();  // has value "epoch"
    explicit time_point(const duration& d);  // same as time_point() + d

    // conversions
    template <class Duration2>
       requires Convertible<Duration2, duration>
       time_point(const time_point<clock, Duration2>& t);

    // observer

    duration time_since_epoch() const;

    // arithmetic

    time_point& operator+=(const duration& d);
    time_point& operator-=(const duration& d);

    // special values

    static time_point min();
    static time_point max();
};

}  // datetime

template <class Clock, class Duration1, class Duration2>
struct common_type<datetime::time_point<Clock, Duration1>, datetime::time_point<Clock, Duration2> >
{
    typedef datetime::time_point<Clock, typename common_type<Duration1, Duration2>::type> type;
};

namespace datetime {

template <class ToDuration, class Clock, class Duration>
  time_point<Clock, ToDuration> time_point_cast(const time_point<Clock, Duration>& t);

template <class Clock, class Duration1, class Duration2>
   bool operator==(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);
template <class Clock, class Duration1, class Duration2>
   bool operator!=(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);
template <class Clock, class Duration1, class Duration2>
   bool operator< (const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);
template <class Clock, class Duration1, class Duration2>
   bool operator<=(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);
template <class Clock, class Duration1, class Duration2>
   bool operator> (const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);
template <class Clock, class Duration1, class Duration2>
   bool operator>=(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);

template <class Clock, class Duration1, class Rep2, class Period2>
  time_point<Clock, typename common_type<Duration1, duration<Rep2, Period2> >::type>
  operator+(const time_point<Clock, Duration1>& lhs, const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period1, class Clock, class Duration2>
  time_point<Clock, typename common_type<duration<Rep1, Period1>, Duration2>::type>
  operator+(const duration<Rep1, Period1>& lhs, const time_point<Clock, Duration2>& rhs);

template <class Clock, class Duration1, class Rep2, class Period2>
  time_point<Clock, typename common_type<Duration1, duration<Rep2, Period2> >::type>
  operator-(const time_point<Clock, Duration1>& lhs, const duration<Rep2, Period2>& rhs);

template <class Clock, class Duration1, class Duration2>
  typename common_type<Duration1, Duration2>::type
  operator-(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);

// clocks

// A clock specifies a representation, and a period.  These specifications are used to
//    to define a clock's native duration and time_point types.  A clock also has a function to get the current
//    time_point.  A clock need not have any state.

// The cost of not including separate types for clocks is that there is no better place to
// bundle the "native" duration and time_point types for a clock with the functionality to
// get the current time_point (what time is it now?).  By bundling this information into a
// type, the extension to support multiple clocks is both easy and obvious.  The ability to
// easily support multiple clocks in such a flexible yet simple and efficient manner is
// very important.  A client might (for example) write code with the clock as a generic
// template parameter, and then easily experiment with different timers.

class system_clock
{
public:
    typedef <unspecified>                      rep;
    typedef ratio<unspecified, unspecified>    period;
    typedef datetime::duration<rep, period>    duration;
    typedef datetime::time_point<system_clock> time_point;
    static const bool is_mononontic = <unspecified>;

    static time_point now();

    // Map to C API
    static time_t      to_time_t  (const time_point& t);
    static time_point  from_time_t(time_t t);
};

class monotonic_clock  // optional
{
public:
    typedef <unspecified>                         rep;
    typedef ratio<unspecified, unspecified>       period;
    typedef datetime::duration<rep, period>       duration;
    typedef datetime::time_point<monotonic_clock> time_point;
    static const bool is_mononontic = true;

    static time_point now();
};

class high_resolution_clock  // optional
{
public:
    typedef <unspecified>                               rep;
    typedef ratio<unspecified, unspecified>             period;
    typedef datetime::duration<rep, period>             duration;
    typedef datetime::time_point<high_resolution_clock> time_point;
    static const bool is_mononontic = <unspecified>;

    static time_point now();
};

// Note: These clocks may be three separate types, or typedefs to one or two common types.

}  // datetime

//////////////////////////
//  Threading interface //
//////////////////////////

// timed_mutex

struct timed_mutex
{
public:
    timed_mutex();
    ~timed_mutex();

    timed_mutex(const timed_mutex&) = delete;
    timed_mutex& operator=(const timed_mutex&) = delete;

    void lock();
    bool try_lock();
    template <class Rep, class Period>
        bool try_lock_for(const datetime::duration<Rep, Period>& rel_time);
    template <class Clock, class Duration>
        bool try_lock_until(const datetime::time_point<Clock, Duration>& abs_time);
    void unlock();

    typedef unspecified native_handle_type;  // optional.  example: pthread_mutex_t*
    native_handle_type native_handle();      // optional
};

// recursive_timed_mutex

struct recursive_timed_mutex
{
public:
    recursive_timed_mutex();
    ~recursive_timed_mutex();

    recursive_timed_mutex(const recursive_timed_mutex&) = delete;
    recursive_timed_mutex& operator=(const recursive_timed_mutex&) = delete;

    void lock();
    bool try_lock();
    template <class Rep, class Period>
        bool try_lock_for(const datetime::duration<Rep, Period>& rel_time);
    template <class Clock, class Duration>
        bool try_lock_until(const datetime::time_point<Clock, Duration>& abs_time);
    void unlock();

    typedef unspecified native_handle_type;  // optional.  example: pthread_mutex_t*
    native_handle_type native_handle();      // optional
};

// unique_lock

template <class Mutex>
class unique_lock
{
public:
    typedef Mutex mutex_type;

    unique_lock();
    explicit unique_lock(mutex_type& m);
    unique_lock(mutex_type& m, defer_lock_t);
    unique_lock(mutex_type& m, try_to_lock_t);
    unique_lock(mutex_type& m, adopt_lock_t);
    template <class Rep, class Period>
        unique_lock(mutex_type& m, const datetime::duration<Rep, Period>& rel_t);
    template <class Clock, class Duration>
        unique_lock(mutex_type& m, const datetime::time_point<Clock, Duration>& abs_time);
    ~unique_lock();

    unique_lock(unique_lock const&) = delete;
    unique_lock& operator=(unique_lock const&) = delete;

    unique_lock(unique_lock&& u);
    unique_lock& operator=(unique_lock&& u);

    void lock();
    bool try_lock();
    template <class Rep, class Period>
        bool try_lock_for(const datetime::duration<Rep, Period>& rel_t);
    template <class Clock, class Duration>
        bool try_lock_until(const datetime::time_point<Clock, Duration>& abs_time);
    void unlock();

    bool owns_lock() const;
    operator unspecified-bool-type () const;
    mutex_type* mutex() const;

    void swap(unique_lock&& u);
    mutex_type* release();
};

// condition_variable

class condition_variable
{
public:
   
    condition_variable();
    ~condition_variable();

    condition_variable(const condition_variable&) = delete;
    condition_variable& operator=(const condition_variable&) = delete;

    void notify_one();
    void notify_all();

    void wait(unique_lock<mutex>& lock);
    template <class Predicate>
        void wait(unique_lock<mutex>& lock, Predicate pred);

    template <class Clock, class Duration>
        bool wait_until(unique_lock<mutex>& lock,
                        const datetime::time_point<Clock, Duration>& abs_time);
    template <class Clock, class Duration, class Predicate>
        bool wait_until(unique_lock<mutex>& lock,
                        const datetime::time_point<Clock, Duration>& abs_time,
                        Predicate pred);

    template <class Rep, class Period>
        bool wait_for(unique_lock<mutex>& lock, const datetime::duration<Rep, Period>& rel_time);
    template <class Rep, class Period, class Predicate>
        bool wait_for(unique_lock<mutex>& lock,  const datetime::duration<Rep, Period>& rel_time,
                      Predicate pred);

    typedef pthread_cond_t* native_handle_type;
    native_handle_type native_handle();
};

// condition_variable_any

class condition_variable_any
{
public:
   
    condition_variable_any();
    ~condition_variable_any();

    condition_variable_any(const condition_variable_any&) = delete;
    condition_variable_any& operator=(const condition_variable_any&) = delete;

    void notify_one();
    void notify_all();

    template <class Lock>
        void wait(Lock& lock);
    template <class Lock, class Predicate>
        void wait(Lock& lock, Predicate pred);

    template <class Lock, class Clock, class Duration>
        bool wait_until(Lock& lock, const datetime::time_point<Clock, Duration>& abs_time);
    template <class Lock, class Clock, class Duration, class Predicate>
        bool wait_until(Lock& lock, const datetime::time_point<Clock, Duration>& abs_time,
                        Predicate pred);

    template <class Lock, class Rep, class Period>
        bool wait_for(Lock& lock, const datetime::duration<Rep, Period>& rel_time);
    template <class Lock, class Rep, class Period, class Predicate>
        bool wait_for(Lock& lock, const datetime::duration<Rep, Period>& rel_time, Predicate pred);
};

// sleep

namespace this_thread
{

    template <class Rep, class Period>
        void sleep_for(const datetime::duration<Rep, Period>& rel_time);

    template <class Clock, class Duration>
        void sleep_until(const datetime::time_point<Clock, Duration>& abs_time);

}  // this_thread

}  // std

*/

#include <ctime>
#include <climits>
#include <inttypes.h>
#include <limits>
#include "type_traits"

#define decltype __typeof__

namespace std
{

//////////////////////////////////////////////////////////
////////////////////// common_type ///////////////////////
//////////////////////////////////////////////////////////

#define VARIADIC_COMMON_TYPE 0

#if VARIADIC_COMMON_TYPE == 0

template <class T, class U>
struct common_type
{
private:
    static T t();
    static U u();
public:
    typedef decltype(true ? t() : u()) type;
};

#else

template <class ...T> struct common_type;

template <class T>
struct common_type<T>
{
    typedef T type;
};

template <class T, class U>
struct common_type<T, U>
{
private:
    static T t();
    static U u();
public:
    typedef decltype(true ? t() : u()) type;
};

template <class T, class U, class ...V>
struct common_type<T, U, V...>
{
    typedef typename common_type<typename common_type<T, U>::type, V...>::type type;
};

#endif

//////////////////////////////////////////////////////////
/////////////////////// ratio ////////////////////////////
//////////////////////////////////////////////////////////

// __static_gcd

template <intmax_t X, intmax_t Y>
struct __static_gcd
{
    static const intmax_t value = __static_gcd<Y, X % Y>::value;
};

template <intmax_t X>
struct __static_gcd<X, 0>
{
    static const intmax_t value = X;
};

// __static_lcm

template <intmax_t X, intmax_t Y>
struct __static_lcm
{
    static const intmax_t value = X / __static_gcd<X, Y>::value * Y;
};

template <intmax_t X>
struct __static_abs
{
    static const intmax_t value = X < 0 ? -X : X;
};

template <intmax_t X>
struct __static_sign
{
    static const intmax_t value = X == 0 ? 0 : (X < 0 ? -1 : 1);
};

template <intmax_t X, intmax_t Y, intmax_t = __static_sign<Y>::value>
class __ll_add;

template <intmax_t X, intmax_t Y>
class __ll_add<X, Y, 1>
{
    static const intmax_t min = (1LL << (sizeof(intmax_t) * CHAR_BIT - 1)) + 1;
    static const intmax_t max = -min;

    static char test[X <= max - Y];
//    static_assert(X <= max - Y, "overflow in __ll_add");
public:
    static const intmax_t value = X + Y;
};

template <intmax_t X, intmax_t Y>
class __ll_add<X, Y, 0>
{
public:
    static const intmax_t value = X;
};

template <intmax_t X, intmax_t Y>
class __ll_add<X, Y, -1>
{
    static const intmax_t min = (1LL << (sizeof(intmax_t) * CHAR_BIT - 1)) + 1;
    static const intmax_t max = -min;

    static char test[min - Y <= X];
//    static_assert(min - Y <= X, "overflow in __ll_add");
public:
    static const intmax_t value = X + Y;
};

template <intmax_t X, intmax_t Y, intmax_t = __static_sign<Y>::value>
class __ll_sub;

template <intmax_t X, intmax_t Y>
class __ll_sub<X, Y, 1>
{
    static const intmax_t min = (1LL << (sizeof(intmax_t) * CHAR_BIT - 1)) + 1;
    static const intmax_t max = -min;

    static char test[min + Y <= X];
//    static_assert(min + Y <= X, "overflow in __ll_sub");
public:
    static const intmax_t value = X - Y;
};

template <intmax_t X, intmax_t Y>
class __ll_sub<X, Y, 0>
{
public:
    static const intmax_t value = X;
};

template <intmax_t X, intmax_t Y>
class __ll_sub<X, Y, -1>
{
    static const intmax_t min = (1LL << (sizeof(intmax_t) * CHAR_BIT - 1)) + 1;
    static const intmax_t max = -min;

    static char test[X <= max + Y];
//    static_assert(X <= max + Y, "overflow in __ll_sub");
public:
    static const intmax_t value = X - Y;
};

template <intmax_t X, intmax_t Y>
class __ll_mul
{
    static const intmax_t nan = (1LL << (sizeof(intmax_t) * CHAR_BIT - 1));
    static const intmax_t min = nan + 1;
    static const intmax_t max = -min;
    static const intmax_t __a_x = __static_abs<X>::value;
    static const intmax_t __a_y = __static_abs<Y>::value;

    static char test1[X != nan];
    static char test2[Y != nan];
    static char test[__a_x <= max / __a_y];
//    static_assert(X != nan && Y != nan && __a_x <= max / __a_y, "overflow in __ll_mul");
public:
    static const intmax_t value = X * Y;
};

template <intmax_t Y>
class __ll_mul<0, Y>
{
public:
    static const intmax_t value = 0;
};

template <intmax_t X>
class __ll_mul<X, 0>
{
public:
    static const intmax_t value = 0;
};

template <>
class __ll_mul<0, 0>
{
public:
    static const intmax_t value = 0;
};

// Not actually used but left here in case needed in future maintenance
template <intmax_t X, intmax_t Y>
class __ll_div
{
    static const intmax_t nan = (1LL << (sizeof(intmax_t) * CHAR_BIT - 1));
    static const intmax_t min = nan + 1;
    static const intmax_t max = -min;

    static char test1[X != nan];
    static char test2[Y != nan];
    static char test3[Y != 0];
//    static_assert(X != nan && Y != nan && Y != 0, "overflow in __ll_div");
public:
    static const intmax_t value = X / Y;
};

template <intmax_t N, intmax_t D = 1>
class ratio
{
    static char test1[__static_abs<N>::value >= 0];
    static char test2[__static_abs<D>::value >  0];
//    static_assert(__static_abs<N>::value >= 0, "ratio numerator is out of range");
//    static_assert(D != 0, "ratio divide by 0");
//    static_assert(__static_abs<D>::value >  0, "ratio denominator is out of range");
    static const intmax_t __na = __static_abs<N>::value;
    static const intmax_t __da = __static_abs<D>::value;
    static const intmax_t __s = __static_sign<N>::value * __static_sign<D>::value;
    static const intmax_t __gcd = __static_gcd<__na, __da>::value;
public:
    static const intmax_t num = __s * __na / __gcd;
    static const intmax_t den = __da / __gcd;
};

template <class T>                  struct ___is_ratio               : tmp::false_type {};
template <intmax_t N, intmax_t D> struct ___is_ratio<ratio<N, D> > : tmp::true_type  {};
template <class T> struct __is_ratio : ___is_ratio<typename tmp::remove_cv<T>::type> {};

typedef ratio<1LL, 1000000000000000000LL> atto;
typedef ratio<1LL,    1000000000000000LL> femto;
typedef ratio<1LL,       1000000000000LL> pico;
typedef ratio<1LL,          1000000000LL> nano;
typedef ratio<1LL,             1000000LL> micro;
typedef ratio<1LL,                1000LL> milli;
typedef ratio<1LL,                 100LL> centi;
typedef ratio<1LL,                  10LL> deci;
typedef ratio<                 10LL, 1LL> deca;
typedef ratio<                100LL, 1LL> hecto;
typedef ratio<               1000LL, 1LL> kilo;
typedef ratio<            1000000LL, 1LL> mega;
typedef ratio<         1000000000LL, 1LL> giga;
typedef ratio<      1000000000000LL, 1LL> tera;
typedef ratio<   1000000000000000LL, 1LL> peta;
typedef ratio<1000000000000000000LL, 1LL> exa;

template <class R1, class R2>
struct ratio_add
{
    typedef ratio<__ll_add<__ll_mul<R1::num, R2::den>::value,
                           __ll_mul<R1::den, R2::num>::value>::value,
                  __ll_mul<R1::den, R2::den>::value> type;
};

template <class R1, class R2>
struct ratio_subtract
{
    typedef ratio<__ll_sub<__ll_mul<R1::num, R2::den>::value,
                           __ll_mul<R1::den, R2::num>::value>::value,
                  __ll_mul<R1::den, R2::den>::value> type;
};

template <class R1, class R2>
struct ratio_multiply
{
    typedef ratio<__ll_mul<R1::num, R2::num>::value, __ll_mul<R1::den, R2::den>::value> type;
};

template <class R1, class R2>
struct ratio_divide
{
    typedef ratio<__ll_mul<R1::num, R2::den>::value, __ll_mul<R1::den, R2::num>::value> type;
};

// ratio_equal

template <class R1, class R2>
struct ratio_equal
    : public tmp::integral_constant<bool, R1::num == R2::num && R1::den == R2::den> {}; 

template <class R1, class R2>
struct ratio_not_equal
    : public tmp::integral_constant<bool, !ratio_equal<R1, R2>::value> {}; 

// ratio_less

// Protect against overflow, and still get the right answer as much as possible.
//   This just demonstrates for fun how far you can push things without hitting
//   overflow.  The obvious and simple implementation is conforming.

template <class R1, class R2, bool ok1, bool ok2>
struct __ratio_less3 // true, true and false, false
{
    static const bool value = __ll_mul<R1::num, R2::den>::value < __ll_mul<R2::num, R1::den>::value;
};

template <class R1, class R2>
struct __ratio_less3<R1, R2, true, false>
{
    static const bool value = true;
};

template <class R1, class R2>
struct __ratio_less3<R1, R2, false, true>
{
    static const bool value = false;
};

template <class R1, class R2, bool = R1::num < R1::den == R2::num < R2::den>
struct __ratio_less2  // N1 < D1 == N2 < D2
{
    static const intmax_t max = -((1LL << (sizeof(intmax_t) * CHAR_BIT - 1)) + 1);
    static const bool ok1 = R1::num <= max / R2::den;
    static const bool ok2 = R2::num <= max / R1::den;
    static const bool value = __ratio_less3<R1, R2, ok1, ok2>::value;
};

template <class R1, class R2>
struct __ratio_less2<R1, R2, false>  // N1 < D1 != N2 < D2
{
    static const bool value = R1::num < R1::den;
};

template <class R1, class R2, bool = R1::num < R1::den == R2::num < R2::den>
struct __ratio_less1  // N1 < D1 == N2 < D2
{
    static const bool value = __ratio_less2<ratio<R1::num, R2::num>, ratio<R1::den, R2::den> >::value;
};

template <class R1, class R2>
struct __ratio_less1<R1, R2, false>  // N1 < D1 != N2 < D2
{
    static const bool value = R1::num < R1::den;
};

template <class R1, class R2, intmax_t S1 = __static_sign<R1::num>::value,
                              intmax_t S2 = __static_sign<R2::num>::value>
struct __ratio_less
{
    static const bool value = S1 < S2;
};

template <class R1, class R2>
struct __ratio_less<R1, R2, 1LL, 1LL>
{
    static const bool value = __ratio_less1<R1, R2>::value;
};

template <class R1, class R2>
struct __ratio_less<R1, R2, -1LL, -1LL>
{
    static const bool value = __ratio_less1<ratio<-R2::num, R2::den>, ratio<-R1::num, R1::den> >::value;
};

template <class R1, class R2>
struct ratio_less
    : public tmp::integral_constant<bool, __ratio_less<R1, R2>::value> {};

template <class R1, class R2>
struct ratio_less_equal
    : public tmp::integral_constant<bool, !ratio_less<R2, R1>::value> {};

template <class R1, class R2>
struct ratio_greater
    : public tmp::integral_constant<bool, ratio_less<R2, R1>::value> {};

template <class R1, class R2>
struct ratio_greater_equal
    : public tmp::integral_constant<bool, !ratio_less<R1, R2>::value> {};

template <class R1, class R2>
struct __ratio_gcd
{
    typedef ratio<__static_gcd<R1::num, R2::num>::value,
                  __static_lcm<R1::den, R2::den>::value> type;
};

//////////////////////////////////////////////////////////
////////////////////// duration //////////////////////////
//////////////////////////////////////////////////////////

namespace datetime
{

template <class RepType, class Period = ratio<1> > class duration;

template <class T>                 struct ___is_duration                         : tmp::false_type {};
template <class Rep, class Period> struct ___is_duration<duration<Rep, Period> > : tmp::true_type  {};
template <class T> struct __is_duration :  ___is_duration<typename tmp::remove_cv<T>::type> {};

// duration_cast

// duration_cast is the heart of this whole prototype.  It can convert any
//   duration to any other.  It is also (implicitly) used in converting
//   time_points.  The conversion is always exact if possible.  And it is
//   always as efficient as hand written code.  If different representations
//   are involved, care is taken to never require implicit conversions.
//   Instead static_cast is used explicitly for every required conversion.
//   If there are a mixture of integral and floating point representations,
//   the use of common_type ensures that the most logical "intermediate"
//   representation is used.
template <class FromDuration, class ToDuration,
          class Period = typename ratio_divide<typename FromDuration::period, typename ToDuration::period>::type,
          bool = Period::num == 1,
          bool = Period::den == 1>
struct __duration_cast;

// When the two periods are the same, all that is left to do is static_cast from
//   the source representation to the target representation (which may be a no-op).
//   This conversion is always exact as long as the static_cast from the source
//   representation to the destination representation is exact.
template <class FromDuration, class ToDuration, class Period>
struct __duration_cast<FromDuration, ToDuration, Period, true, true>
{
    ToDuration operator()(const FromDuration& fd) const
    {
        return ToDuration(static_cast<typename ToDuration::rep>(fd.count()));
    }
};

// When the numerator of FromPeriod / ToPeriod is 1, then all we need to do is
//   divide by the denominator of FromPeriod / ToPeriod.  The common_type of
//   the two representations is used for the intermediate computation before
//   static_cast'ing to the destination.
//   This conversion is generally not exact because of the division (but could be
//   if you get lucky on the run time value of fd.count()).
template <class FromDuration, class ToDuration, class Period>
struct __duration_cast<FromDuration, ToDuration, Period, true, false>
{
    ToDuration operator()(const FromDuration& fd) const
    {
#if VARIADIC_COMMON_TYPE == 0
        typedef typename common_type<
            typename common_type<typename ToDuration::rep, typename FromDuration::rep>::type,
            intmax_t>::type C;
#else
        typedef typename common_type<typename ToDuration::rep, typename FromDuration::rep, intmax_t>::type C;
#endif
        return ToDuration(static_cast<typename ToDuration::rep>(
                          static_cast<C>(fd.count()) / static_cast<C>(Period::den)));
    }
};

// When the denomenator of FromPeriod / ToPeriod is 1, then all we need to do is
//   multiply by the numerator of FromPeriod / ToPeriod.  The common_type of
//   the two representations is used for the intermediate computation before
//   static_cast'ing to the destination.
//   This conversion is always exact as long as the static_cast's involved are exact.
template <class FromDuration, class ToDuration, class Period>
struct __duration_cast<FromDuration, ToDuration, Period, false, true>
{
    ToDuration operator()(const FromDuration& fd) const
    {
#if VARIADIC_COMMON_TYPE == 0
        typedef typename common_type<
            typename common_type<typename ToDuration::rep, typename FromDuration::rep>::type,
            intmax_t>::type C;
#else
        typedef typename common_type<typename ToDuration::rep, typename FromDuration::rep, intmax_t>::type C;
#endif
        return ToDuration(static_cast<typename ToDuration::rep>(
                          static_cast<C>(fd.count()) * static_cast<C>(Period::num)));
    }
};

// When neither the numerator or denominator of FromPeriod / ToPeriod is 1, then we need to
//   multiply by the numerator and divide by the denominator of FromPeriod / ToPeriod.  The
//   common_type of the two representations is used for the intermediate computation before
//   static_cast'ing to the destination.
//   This conversion is generally not exact because of the division (but could be
//   if you get lucky on the run time value of fd.count()).
template <class FromDuration, class ToDuration, class Period>
struct __duration_cast<FromDuration, ToDuration, Period, false, false>
{
    ToDuration operator()(const FromDuration& fd) const
    {
#if VARIADIC_COMMON_TYPE == 0
        typedef typename common_type<
            typename common_type<typename ToDuration::rep, typename FromDuration::rep>::type,
            intmax_t>::type C;
#else
        typedef typename common_type<typename ToDuration::rep, typename FromDuration::rep, intmax_t>::type C;
#endif
        return ToDuration(static_cast<typename ToDuration::rep>(
                          static_cast<C>(fd.count()) * static_cast<C>(Period::num) / static_cast<C>(Period::den)));
    }
};

// Compile-time select the most efficient algorithm for the conversion...
template <class ToDuration, class Rep, class Period>
inline
typename tmp::enable_if
<
    __is_duration<ToDuration>::value,
    ToDuration
>::type
duration_cast(const duration<Rep, Period>& fd)
{
    return __duration_cast<duration<Rep, Period>, ToDuration>()(fd);
}

// Support bidirectional (non-exact) conversions for floating point rep types
//   (or user defined rep types which specialize treat_as_floating_point).
template <class Rep> struct treat_as_floating_point : tmp::is_floating_point<Rep> {};

template <class Rep>
struct duration_values
{
    static Rep __min_imp(tmp::false_type) {return -max();}
    static Rep __min_imp(tmp::true_type)  {return zero();}
public:
    static Rep zero() {return Rep(0);}
    static Rep max()  {return numeric_limits<Rep>::max();}
    static Rep min()  {return __min_imp(tmp::is_unsigned<Rep>());}
};

// duration

template <class Rep, class Period>
class duration
{
    static char test0[!__is_duration<Rep>::value];
//  static_assert(!__is_duration<Rep>::value, "A duration representation can not be a duration");
    static char test1[__is_ratio<Period>::value];
//  static_assert(__is_ratio<Period>::value, "Second template parameter of duration must be a std::ratio");
    static char test2[Period::num > 0];
//  static_assert(Period::num > 0, "duration period must be positive");
public:
    typedef Rep rep;
    typedef Period period;
private:
    rep rep_;
public:

    duration() {} // = default;
    template <class Rep2>
        explicit duration(const Rep2& r,
            typename tmp::enable_if
            <
               tmp::is_convertible<Rep2, rep>::value &&
               (treat_as_floating_point<rep>::value ||
               !treat_as_floating_point<rep>::value && !treat_as_floating_point<Rep2>::value)
            >::type* = 0)
                : rep_(r) {}

    // conversions
    template <class Rep2, class Period2>
        duration(const duration<Rep2, Period2>& d,
            typename tmp::enable_if
            <
                treat_as_floating_point<rep>::value ||
                (ratio_divide<Period2, period>::type::den == 1 && !treat_as_floating_point<Rep2>::value)
            >::type* = 0)
                : rep_(duration_cast<duration>(d).count()) {}

    // observer

    rep count() const {return rep_;}

    // arithmetic

    duration  operator+() const {return *this;}
    duration  operator-() const {return duration(-rep_);}
    duration& operator++()      {++rep_; return *this;}
    duration  operator++(int)   {return duration(rep_++);}
    duration& operator--()      {--rep_; return *this;}
    duration  operator--(int)   {return duration(rep_--);}

    duration& operator+=(const duration& d) {rep_ += d.count(); return *this;}
    duration& operator-=(const duration& d) {rep_ -= d.count(); return *this;}

    duration& operator*=(const rep& rhs) {rep_ *= rhs; return *this;}
    duration& operator/=(const rep& rhs) {rep_ /= rhs; return *this;}

    // special values

    static duration zero() {return duration(duration_values<rep>::zero());}
    static duration min()  {return duration(duration_values<rep>::min());}
    static duration max()  {return duration(duration_values<rep>::max());}
};

typedef duration<long long,         nano> nanoseconds;
typedef duration<long long,        micro> microseconds;
typedef duration<long long,        milli> milliseconds;
typedef duration<long long              > seconds;
typedef duration<     long, ratio<  60> > minutes;
typedef duration<     long, ratio<3600> > hours;

} // datetime

template <class Rep1, class Period1, class Rep2, class Period2>
struct common_type<datetime::duration<Rep1, Period1>, datetime::duration<Rep2, Period2> >
{
    typedef datetime::duration<typename common_type<Rep1, Rep2>::type,
                               typename __ratio_gcd<Period1, Period2>::type> type;
};

namespace datetime {

// Duration ==

template <class LhsDuration, class RhsDuration>
struct __duration_eq
{
    bool operator()(const LhsDuration& lhs, const RhsDuration& rhs)
        {
            typedef typename common_type<LhsDuration, RhsDuration>::type CD;
            return CD(lhs).count() == CD(rhs).count();
        }
};

template <class LhsDuration>
struct __duration_eq<LhsDuration, LhsDuration>
{
    bool operator()(const LhsDuration& lhs, const LhsDuration& rhs)
        {return lhs.count() == rhs.count();}
};

template <class Rep1, class Period1, class Rep2, class Period2>
inline
bool
operator==(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs)
{
    return __duration_eq<duration<Rep1, Period1>, duration<Rep2, Period2> >()(lhs, rhs);
}

// Duration !=

template <class Rep1, class Period1, class Rep2, class Period2>
inline
bool
operator!=(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs)
{
    return !(lhs == rhs);
}

// Duration <

template <class LhsDuration, class RhsDuration>
struct __duration_lt
{
    bool operator()(const LhsDuration& lhs, const RhsDuration& rhs)
        {
            typedef typename common_type<LhsDuration, RhsDuration>::type CD;
            return CD(lhs).count() < CD(rhs).count();
        }
};

template <class LhsDuration>
struct __duration_lt<LhsDuration, LhsDuration>
{
    bool operator()(const LhsDuration& lhs, const LhsDuration& rhs)
        {return lhs.count() < rhs.count();}
};

template <class Rep1, class Period1, class Rep2, class Period2>
inline
bool
operator< (const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs)
{
    return __duration_lt<duration<Rep1, Period1>, duration<Rep2, Period2> >()(lhs, rhs);
}

// Duration >

template <class Rep1, class Period1, class Rep2, class Period2>
inline
bool
operator> (const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs)
{
    return rhs < lhs;
}

// Duration <=

template <class Rep1, class Period1, class Rep2, class Period2>
inline
bool
operator<=(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs)
{
    return !(rhs < lhs);
}

// Duration >=

template <class Rep1, class Period1, class Rep2, class Period2>
inline
bool
operator>=(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs)
{
    return !(lhs < rhs);
}

// Duration +

template <class Rep1, class Period1, class Rep2, class Period2>
inline
typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2> >::type
operator+(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs)
{
    typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2> >::type result = lhs;
    result += rhs;
    return result;
}

// Duration -

template <class Rep1, class Period1, class Rep2, class Period2>
inline
typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2> >::type
operator-(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs)
{
    typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2> >::type result = lhs;
    result -= rhs;
    return result;
}

// Duration *

template <class Rep1, class Period, class Rep2>
inline
typename tmp::enable_if
<
    tmp::is_convertible<Rep1, typename common_type<Rep1, Rep2>::type>::value &&
    tmp::is_convertible<Rep2, typename common_type<Rep1, Rep2>::type>::value,
    duration<typename common_type<Rep1, Rep2>::type, Period>
>::type
operator*(const duration<Rep1, Period>& d, const Rep2& s)
{
    typedef typename common_type<Rep1, Rep2>::type CR;
    duration<CR, Period> r = d;
    r *= static_cast<CR>(s);
    return r;
}

template <class Rep1, class Period, class Rep2>
inline
typename tmp::enable_if
<
    tmp::is_convertible<Rep1, typename common_type<Rep1, Rep2>::type>::value &&
    tmp::is_convertible<Rep2, typename common_type<Rep1, Rep2>::type>::value,
    duration<typename common_type<Rep1, Rep2>::type, Period>
>::type
operator*(const Rep1& s, const duration<Rep2, Period>& d)
{
    return d * s;
}

// Duration /

template <class Duration, class Rep, bool = __is_duration<Rep>::value>
struct __duration_divide_result
{
};

template <class Duration, class Rep2,
    bool = tmp::is_convertible<typename Duration::rep,
                               typename common_type<typename Duration::rep, Rep2>::type>::value &&
           tmp::is_convertible<Rep2,
                               typename common_type<typename Duration::rep, Rep2>::type>::value>
struct __duration_divide_imp
{
};

template <class Rep1, class Period, class Rep2>
struct __duration_divide_imp<duration<Rep1, Period>, Rep2, true>
{
    typedef duration<typename common_type<Rep1, Rep2>::type, Period> type;
};

template <class Rep1, class Period, class Rep2>
struct __duration_divide_result<duration<Rep1, Period>, Rep2, false>
    : __duration_divide_imp<duration<Rep1, Period>, Rep2>
{
};

template <class Rep1, class Period, class Rep2>
inline
typename __duration_divide_result<duration<Rep1, Period>, Rep2>::type
operator/(const duration<Rep1, Period>& d, const Rep2& s)
{
    typedef typename common_type<Rep1, Rep2>::type CR;
    duration<CR, Period> r = d;
    r /= static_cast<CR>(s);
    return r;
}

template <class Rep1, class Period1, class Rep2, class Period2>
inline
typename common_type<Rep1, Rep2>::type
operator/(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs)
{
    typedef typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2> >::type CD;
    return CD(lhs).count() / CD(rhs).count();
}

//////////////////////////////////////////////////////////
///////////////////// time_point /////////////////////////
//////////////////////////////////////////////////////////

template <class Clock, class Duration = typename Clock::duration>
class time_point
{
    static char test1[__is_duration<Duration>::value];
//  static_assert(__is_duration<Duration>::value,
//                "Second template parameter of time_point must be a std::datetime::duration");
public:
    typedef Clock                     clock;
    typedef Duration                  duration;
    typedef typename duration::rep    rep;
    typedef typename duration::period period;
private:
    duration d_;

public:
    time_point() : d_(duration::zero()) {}
    explicit time_point(const duration& d) : d_(d) {}

    // conversions
    template <class Duration2>
    time_point(const time_point<clock, Duration2>& t,
        typename tmp::enable_if
        <
            tmp::is_convertible<Duration2, duration>::value
        >::type* = 0)
            : d_(t.time_since_epoch()) {}

    // observer

    duration time_since_epoch() const {return d_;}

    // arithmetic

    time_point& operator+=(const duration& d) {d_ += d; return *this;}
    time_point& operator-=(const duration& d) {d_ -= d; return *this;}

    // special values

    static time_point min() {return time_point(duration::min());}
    static time_point max() {return time_point(duration::max());}
};

} // datetime

template <class Clock, class Duration1, class Duration2>
struct common_type<datetime::time_point<Clock, Duration1>, datetime::time_point<Clock, Duration2> >
{
    typedef datetime::time_point<Clock, typename common_type<Duration1, Duration2>::type> type;
};

namespace datetime {

template <class ToDuration, class Clock, class Duration>
inline
time_point<Clock, ToDuration>
time_point_cast(const time_point<Clock, Duration>& t)
{
    return time_point<Clock, ToDuration>(duration_cast<ToDuration>(t.time_since_epoch()));
}

// time_point ==

template <class Clock, class Duration1, class Duration2>
inline
bool
operator==(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs)
{
    return lhs.time_since_epoch() == rhs.time_since_epoch();
}

// time_point !=

template <class Clock, class Duration1, class Duration2>
inline
bool
operator!=(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs)
{
    return !(lhs == rhs);
}

// time_point <

template <class Clock, class Duration1, class Duration2>
inline
bool
operator<(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs)
{
    return lhs.time_since_epoch() < rhs.time_since_epoch();
}

// time_point >

template <class Clock, class Duration1, class Duration2>
inline
bool
operator>(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs)
{
    return rhs < lhs;
}

// time_point <=

template <class Clock, class Duration1, class Duration2>
inline
bool
operator<=(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs)
{
    return !(rhs < lhs);
}

// time_point >=

template <class Clock, class Duration1, class Duration2>
inline
bool
operator>=(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs)
{
    return !(lhs < rhs);
}

// time_point operator+(time_point x, duration y);

template <class Clock, class Duration1, class Rep2, class Period2>
inline
time_point<Clock, typename common_type<Duration1, duration<Rep2, Period2> >::type>
operator+(const time_point<Clock, Duration1>& lhs, const duration<Rep2, Period2>& rhs)
{
    typedef time_point<Clock, typename common_type<Duration1, duration<Rep2, Period2> >::type> TimeResult;
    TimeResult r(lhs);
    r += rhs;
    return r;
}

// time_point operator+(duration x, time_point y);

template <class Rep1, class Period1, class Clock, class Duration2>
inline
time_point<Clock, typename common_type<duration<Rep1, Period1>, Duration2>::type>
operator+(const duration<Rep1, Period1>& lhs, const time_point<Clock, Duration2>& rhs)
{
    return rhs + lhs;
}

// time_point operator-(time_point x, duration y);

template <class Clock, class Duration1, class Rep2, class Period2>
inline
time_point<Clock, typename common_type<Duration1, duration<Rep2, Period2> >::type>
operator-(const time_point<Clock, Duration1>& lhs, const duration<Rep2, Period2>& rhs)
{
    return lhs + (-rhs);
}

// duration operator-(time_point x, time_point y);

template <class Clock, class Duration1, class Duration2>
inline
typename common_type<Duration1, Duration2>::type
operator-(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs)
{
    return lhs.time_since_epoch() - rhs.time_since_epoch();
}

//////////////////////////////////////////////////////////
/////////////////////// clocks ///////////////////////////
//////////////////////////////////////////////////////////

// If you're porting, clocks are the system-specific (non-portable) part.
// You'll need to know how to get the current time and implement that under now().
// You'll need to know what units (tick period) and representation makes the most
// sense for your clock and set those accordingly.
// If you know how to map this clock to time_t (perhaps your clock is std::time, which
// makes that trivial), then you can fill out system_clock's to_time_t() and from_time_t().

class system_clock
{
public:
    typedef microseconds                       duration;
    typedef duration::rep                      rep;
    typedef duration::period                   period;
    typedef datetime::time_point<system_clock> time_point;
    static const bool is_monotonic =           false;

    static time_point now();
    static time_t     to_time_t  (const time_point& t);
    static time_point from_time_t(time_t t);
};

class monotonic_clock
{
public:
    typedef nanoseconds                           duration;
    typedef duration::rep                         rep;
    typedef duration::period                      period;
    typedef datetime::time_point<monotonic_clock> time_point;
    static const bool is_monotonic =              true;

    static time_point now();
};

typedef monotonic_clock high_resolution_clock;

} // datetime
} // std

// clocks.cpp

#include <sys/time.h> //for gettimeofday and timeval
#include <mach/mach_time.h>  // mach_absolute_time, mach_timebase_info_data_t

namespace std {
namespace datetime {

// system_clock

// gettimeofday is the most precise "system time" available on this platform.
// It returns the number of microseconds since New Years 1970 in a struct called timeval
// which has a field for seconds and a field for microseconds.
//    Fill in the timeval and then convert that to the time_point
system_clock::time_point
system_clock::now()
{
    timeval tv;
    gettimeofday(&tv, 0);
    return time_point(seconds(tv.tv_sec) + microseconds(tv.tv_usec));
}

// Take advantage of the fact that on this platform time_t is nothing but
//    an integral count of seconds since New Years 1970 (same epoch as timeval).
//    Just get the duration out of the time_point and truncate it to seconds.
time_t
system_clock::to_time_t(const time_point& t)
{
    return time_t(duration_cast<seconds>(t.time_since_epoch()).count());
}

// Just turn the time_t into a count of seconds and construct a time_point with it.
system_clock::time_point
system_clock::from_time_t(time_t t)
{
    return system_clock::time_point(seconds(t));
}

// monotonic_clock

// Note, in this implementation monotonic_clock and high_resolution_clock
//   are the same clock.  They are both based on mach_absolute_time().
//   mach_absolute_time() * MachInfo.numer / MachInfo.denom is the number of
//   nanoseconds since the computer booted up.  MachInfo.numer and MachInfo.denom
//   are run time constants supplied by the OS.  This clock has no relationship
//   to the Gregorian calendar.  It's main use is as a high resolution timer.

// MachInfo.numer / MachInfo.denom is often 1 on the latest equipment.  Specialize
//   for that case as an optimization.
static
monotonic_clock::rep
monotonic_simplified()
{
    return mach_absolute_time();
}

static
double
compute_monotonic_factor()
{
    mach_timebase_info_data_t MachInfo;
    mach_timebase_info(&MachInfo);
    return static_cast<double>(MachInfo.numer) / MachInfo.denom;
}

static
monotonic_clock::rep
monotonic_full()
{
    static const double factor = compute_monotonic_factor();
    return static_cast<monotonic_clock::rep>(mach_absolute_time() * factor);
}

typedef monotonic_clock::rep (*FP)();

static
FP
init_monotonic_clock()
{
    mach_timebase_info_data_t MachInfo;
    mach_timebase_info(&MachInfo);
    if (MachInfo.numer == MachInfo.denom)
        return &monotonic_simplified;
    return &monotonic_full;
}

monotonic_clock::time_point
monotonic_clock::now()
{
    static FP fp = init_monotonic_clock();
    return time_point(duration(fp()));
}

// clocks.cpp end

} } // std::datetime

//////////////////////////////////////////////////////////
///////////// simulated thread interface /////////////////
//////////////////////////////////////////////////////////

#include <iostream>

namespace std {

void __print_time(datetime::system_clock::time_point t)
{
    using namespace datetime;
    time_t c_time = system_clock::to_time_t(t);
    std::tm* tmptr = std::localtime(&c_time);
    system_clock::duration d = t.time_since_epoch();
    std::cout << tmptr->tm_hour << ':' << tmptr->tm_min << ':' << tmptr->tm_sec
              << '.' << (d - duration_cast<seconds>(d)).count();
}

namespace this_thread {

template <class Rep, class Period>
void sleep_for(const datetime::duration<Rep, Period>& d)
{
    datetime::microseconds t = datetime::duration_cast<datetime::microseconds>(d);
    if (t < d)
        ++t;
    if (t > datetime::microseconds(0))
        std::cout << "sleep_for " << t.count() << " microseconds\n";
}

template <class Clock, class Duration>
void sleep_until(const datetime::time_point<Clock, Duration>& t)
{
    using namespace datetime;
    typedef time_point<Clock, Duration> Time;
    typedef system_clock::time_point SysTime;
    if (t > Clock::now())
    {
        typedef typename common_type<typename Time::duration, typename SysTime::duration>::type D;
        /* auto */ D d = t - Clock::now();
        microseconds us = duration_cast<microseconds>(d);
        if (us < d)
            ++us;
        SysTime st = system_clock::now() + us;
        std::cout << "sleep_until    ";
        __print_time(st);
        std::cout << " which is " << (st - system_clock::now()).count() << " microseconds away\n";
    }
}

}  // this_thread

struct mutex {};

struct timed_mutex
{
    bool try_lock() {std::cout << "timed_mutex::try_lock()\n";}

    template <class Rep, class Period>
        bool try_lock_for(const datetime::duration<Rep, Period>& d)
        {
            datetime::microseconds t = datetime::duration_cast<datetime::microseconds>(d);
            if (t <= datetime::microseconds(0))
                return try_lock();
            std::cout << "try_lock_for " << t.count() << " microseconds\n";
            return true;
        }

    template <class Clock, class Duration>
    bool try_lock_until(const datetime::time_point<Clock, Duration>& t)
    {
        using namespace datetime;
        typedef time_point<Clock, Duration> Time;
        typedef system_clock::time_point SysTime;
        if (t <= Clock::now())
            return try_lock();
        typedef typename common_type<typename Time::duration, typename Clock::duration>::type D;
        /* auto */ D d = t - Clock::now();
        microseconds us = duration_cast<microseconds>(d);
        SysTime st = system_clock::now() + us;
        std::cout << "try_lock_until ";
        __print_time(st);
        std::cout << " which is " << (st - system_clock::now()).count() << " microseconds away\n";
    }
};

struct condition_variable
{
    template <class Rep, class Period>
        bool wait_for(mutex&, const datetime::duration<Rep, Period>& d)
        {
            datetime::microseconds t = datetime::duration_cast<datetime::microseconds>(d);
            std::cout << "wait_for " << t.count() << " microseconds\n";
            return true;
        }

    template <class Clock, class Duration>
    bool wait_until(mutex&, const datetime::time_point<Clock, Duration>& t)
    {
        using namespace datetime;
        typedef time_point<Clock, Duration> Time;
        typedef system_clock::time_point SysTime;
        if (t <= Clock::now())
            return false;
        typedef typename common_type<typename Time::duration, typename Clock::duration>::type D;
        /* auto */ D d = t - Clock::now();
        microseconds us = duration_cast<microseconds>(d);
        SysTime st = system_clock::now() + us;
         std::cout << "wait_until     ";
        __print_time(st);
        std::cout << " which is " << (st - system_clock::now()).count() << " microseconds away\n";
    }
};

} // std

//////////////////////////////////////////////////////////
///////////////////  End of implemetation ////////////////
//////////////////////////////////////////////////////////

//////////////////////////////////////////////////////////
//////////// Simple sleep and wait examples //////////////
//////////////////////////////////////////////////////////

std::mutex m;
std::timed_mutex mut;
std::condition_variable cv;

void basic_examples()
{
    std::cout << "Running basic examples\n";
    using namespace std;
    using namespace std::datetime;
    system_clock::time_point time_limit = system_clock::now() + seconds(4) + milliseconds(500);
    this_thread::sleep_for(seconds(3));
    this_thread::sleep_for(nanoseconds(300));
    this_thread::sleep_until(time_limit);
//    this_thread::sleep_for(time_limit);  // desired compile-time error
//    this_thread::sleep_until(seconds(3)); // desired compile-time error
    mut.try_lock_for(milliseconds(30));
    mut.try_lock_until(time_limit);
//    mut.try_lock_for(time_limit);        // desired compile-time error
//    mut.try_lock_until(milliseconds(30)); // desired compile-time error
    cv.wait_for(m, minutes(1));    // real code would put this in a loop
    cv.wait_until(m, time_limit);  // real code would put this in a loop
    // For those who prefer floating point
    this_thread::sleep_for(duration<double>(0.25));
    this_thread::sleep_until(system_clock::now() + duration<double>(1.5));
}

//////////////////////////////////////////////////////////
//////////////////// User1 Example ///////////////////////
//////////////////////////////////////////////////////////

namespace User1
{
// Example type-safe "physics" code interoperating with std::datetime::duration types
//  and taking advantage of the std::ratio infrastructure and design philosophy.

// length - mimics std::datetime::duration except restricts representation to double.
//    Uses std::ratio facilities for length units conversions.

template <class Ratio>
class length
{
public:
    typedef Ratio ratio;
private:
    double len_;
public:

    length() : len_(1) {}
    length(const double& len) : len_(len) {}

    // conversions
    template <class R>
    length(const length<R>& d)
            : len_(d.count() * std::ratio_divide<Ratio, R>::type::den /
                               std::ratio_divide<Ratio, R>::type::num) {}

    // observer

    double count() const {return len_;}

    // arithmetic

    length& operator+=(const length& d) {len_ += d.count(); return *this;}
    length& operator-=(const length& d) {len_ -= d.count(); return *this;}

    length operator+() const {return *this;}
    length operator-() const {return length(-len_);}

    length& operator*=(double rhs) {len_ *= rhs; return *this;}
    length& operator/=(double rhs) {len_ /= rhs; return *this;}
};

// Sparse sampling of length units
typedef length<std::ratio<1> >          meter;        // set meter as "unity"
typedef length<std::centi>              centimeter;   // 1/100 meter
typedef length<std::kilo>               kilometer;    // 1000  meters
typedef length<std::ratio<254, 10000> > inch;         // 254/10000 meters
// length takes ratio instead of two integral types so that definitions can be made like so:
typedef length<std::ratio_multiply<std::ratio<12>, inch::ratio>::type>   foot;  // 12 inchs
typedef length<std::ratio_multiply<std::ratio<5280>, foot::ratio>::type> mile;  // 5280 feet

// Need a floating point definition of seconds
typedef std::datetime::duration<double> seconds;                         // unity
// Demo of (scientific) support for sub-nanosecond resolutions
typedef std::datetime::duration<double,  std::pico> picosecond;  // 10^-12 seconds
typedef std::datetime::duration<double, std::femto> femtosecond; // 10^-15 seconds
typedef std::datetime::duration<double,  std::atto> attosecond;  // 10^-18 seconds

// A very brief proof-of-concept for SIUnits-like library
//  Hard-wired to floating point seconds and meters, but accepts other units (shown in testUser1())
template <class R1, class R2>
class quantity
{
    double q_;
public:
    quantity() : q_(1) {}

    double get() const {return q_;}
    void set(double q) {q_ = q;}
};

template <>
class quantity<std::ratio<1>, std::ratio<0> >
{
    double q_;
public:
    quantity() : q_(1) {}
    quantity(seconds d) : q_(d.count()) {}  // note:  only User1::seconds needed here

    double get() const {return q_;}
    void set(double q) {q_ = q;}
};

template <>
class quantity<std::ratio<0>, std::ratio<1> >
{
    double q_;
public:
    quantity() : q_(1) {}
    quantity(meter d) : q_(d.count()) {}  // note:  only User1::meter needed here

    double get() const {return q_;}
    void set(double q) {q_ = q;}
};

template <>
class quantity<std::ratio<0>, std::ratio<0> >
{
    double q_;
public:
    quantity() : q_(1) {}
    quantity(double d) : q_(d) {}

    double get() const {return q_;}
    void set(double q) {q_ = q;}
};

// Example SI-Units
typedef quantity<std::ratio<0>, std::ratio<0> >  Scalar;
typedef quantity<std::ratio<1>, std::ratio<0> >  Time;         // second
typedef quantity<std::ratio<0>, std::ratio<1> >  Distance;     // meter
typedef quantity<std::ratio<-1>, std::ratio<1> > Speed;        // meter/second
typedef quantity<std::ratio<-2>, std::ratio<1> > Acceleration; // meter/second^2

template <class R1, class R2, class R3, class R4>
quantity<typename std::ratio_subtract<R1, R3>::type, typename std::ratio_subtract<R2, R4>::type>
operator/(const quantity<R1, R2>& x, const quantity<R3, R4>& y)
{
    typedef quantity<typename std::ratio_subtract<R1, R3>::type, typename std::ratio_subtract<R2, R4>::type> R;
    R r;
    r.set(x.get() / y.get());
    return r;
}

template <class R1, class R2, class R3, class R4>
quantity<typename std::ratio_add<R1, R3>::type, typename std::ratio_add<R2, R4>::type>
operator*(const quantity<R1, R2>& x, const quantity<R3, R4>& y)
{
    typedef quantity<typename std::ratio_add<R1, R3>::type, typename std::ratio_add<R2, R4>::type> R;
    R r;
    r.set(x.get() * y.get());
    return r;
}

template <class R1, class R2>
quantity<R1, R2>
operator+(const quantity<R1, R2>& x, const quantity<R1, R2>& y)
{
    typedef quantity<R1, R2> R;
    R r;
    r.set(x.get() + y.get());
    return r;
}

template <class R1, class R2>
quantity<R1, R2>
operator-(const quantity<R1, R2>& x, const quantity<R1, R2>& y)
{
    typedef quantity<R1, R2> R;
    R r;
    r.set(x.get() - y.get());
    return r;
}

// Example type-safe physics function
Distance
compute_distance(Speed v0, Time t, Acceleration a)
{
    return v0 * t + Scalar(.5) * a * t * t;  // if a units mistake is made here it won't compile
}

} // User1

#include <iostream>

// Exercise example type-safe physics function and show interoperation
// of custom time durations (User1::seconds) and standard time durations (std::hours).
// Though input can be arbitrary (but type-safe) units, output is always in SI-units
//   (a limitation of the simplified Units lib demoed here).
void testUser1()
{
    std::cout << "*************\n";
    std::cout << "* testUser1 *\n";
    std::cout << "*************\n";
    User1::Distance d( User1::mile(110) );
    User1::Time t( std::datetime::hours(2) );
    User1::Speed s = d / t;
    std::cout << "Speed = " << s.get() << " meters/sec\n";
    User1::Acceleration a = User1::Distance( User1::foot(32.2) ) / User1::Time() / User1::Time();
    std::cout << "Acceleration = " << a.get() << " meters/sec^2\n";
    User1::Distance df = compute_distance(s, User1::Time( User1::seconds(0.5) ), a);
    std::cout << "Distance = " << df.get() << " meters\n";
    std::cout << "There are " << User1::mile::ratio::den << '/' << User1::mile::ratio::num << " miles/meter";
    User1::meter mt = 1;
    User1::mile mi = mt;
    std::cout << " which is approximately " << mi.count() << '\n';
    std::cout << "There are " << User1::mile::ratio::num << '/' << User1::mile::ratio::den << " meters/mile";
    mi = 1;
    mt = mi;
    std::cout << " which is approximately " << mt.count() << '\n';
    User1::attosecond as(1);
    User1::seconds sec = as;
    std::cout << "1 attosecond is " << sec.count() << " seconds\n";
    std::cout << "sec = as;  // compiles\n";
    sec = User1::seconds(1);
    as = sec;
    std::cout << "1 second is " << as.count() << " attoseconds\n";
    std::cout << "as = sec;  // compiles\n";
    std::cout << "\n";
}

//////////////////////////////////////////////////////////
//////////////////// User2 Example ///////////////////////
//////////////////////////////////////////////////////////

// Demonstrate User2:
// A "saturating" signed integral type  is developed.  This type has +/- infinity and a nan
// (like IEEE floating point) but otherwise obeys signed integral arithmetic.
// This class is subsequently used as the rep in std::datetime::duration to demonstrate a
// duration class that does not silently ignore overflow.
#include <ostream>
#include <stdexcept>
#include <climits>

namespace User2
{

template <class I>
class saturate
{
public:
    typedef I int_type;

    static const int_type nan = int_type(int_type(1) << (sizeof(int_type) * CHAR_BIT - 1));
    static const int_type neg_inf = nan + 1;
    static const int_type pos_inf = -neg_inf;
private:
    int_type i_;

//     static_assert(std::is_integral<int_type>::value && std::is_signed<int_type>::value,
//                   "saturate only accepts signed integral types");
//     static_assert(nan == -nan && neg_inf < pos_inf,
//                   "saturate assumes two's complement hardware for signed integrals");

public:
    saturate() : i_(nan) {}
    explicit saturate(int_type i) : i_(i) {}
    // explicit
       operator int_type() const;

    saturate& operator+=(saturate x);
    saturate& operator-=(saturate x) {return *this += -x;}
    saturate& operator*=(saturate x);
    saturate& operator/=(saturate x);
    saturate& operator%=(saturate x);

    saturate  operator- () const {return saturate(-i_);}
    saturate& operator++()       {*this += saturate(int_type(1)); return *this;}
    saturate  operator++(int)    {saturate tmp(*this); ++(*this); return tmp;}
    saturate& operator--()       {*this -= saturate(int_type(1)); return *this;}
    saturate  operator--(int)    {saturate tmp(*this); --(*this); return tmp;}

    friend saturate operator+(saturate x, saturate y) {return x += y;}
    friend saturate operator-(saturate x, saturate y) {return x -= y;}
    friend saturate operator*(saturate x, saturate y) {return x *= y;}
    friend saturate operator/(saturate x, saturate y) {return x /= y;}
    friend saturate operator%(saturate x, saturate y) {return x %= y;}

    friend bool operator==(saturate x, saturate y)
    {
        if (x.i_ == nan || y.i_ == nan)
            return false;
        return x.i_ == y.i_;
    }

    friend bool operator!=(saturate x, saturate y) {return !(x == y);}

    friend bool operator<(saturate x, saturate y)
    {
        if (x.i_ == nan || y.i_ == nan)
            return false;
        return x.i_ < y.i_;
    }

    friend bool operator<=(saturate x, saturate y)
    {
        if (x.i_ == nan || y.i_ == nan)
            return false;
        return x.i_ <= y.i_;
    }

    friend bool operator>(saturate x, saturate y)
    {
        if (x.i_ == nan || y.i_ == nan)
            return false;
        return x.i_ > y.i_;
    }

    friend bool operator>=(saturate x, saturate y)
    {
        if (x.i_ == nan || y.i_ == nan)
            return false;
        return x.i_ >= y.i_;
    }

    friend std::ostream& operator<<(std::ostream& os, saturate s)
    {
        switch (s.i_)
        {
        case pos_inf:
            return os << "inf";
        case nan:
            return os << "nan";
        case neg_inf:
            return os << "-inf";
        };
        return os << s.i_;
    }
};

template <class I>
saturate<I>::operator int_type() const
{
    switch (i_)
    {
    case nan:
    case neg_inf:
    case pos_inf:
        throw std::out_of_range("saturate special value can not convert to int_type");
    }
    return i_;
}

template <class I>
saturate<I>&
saturate<I>::operator+=(saturate x)
{
    switch (i_)
    {
    case pos_inf:
        switch (x.i_)
        {
        case neg_inf:
        case nan:
            i_ = nan;
        }
        return *this;
    case nan:
        return *this;
    case neg_inf:
        switch (x.i_)
        {
        case pos_inf:
        case nan:
            i_ = nan;
        }
        return *this;
    }
    switch (x.i_)
    {
    case pos_inf:
    case neg_inf:
    case nan:
        i_ = x.i_;
        return *this;
    }
    if (x.i_ >= 0)
    {
        if (i_ < pos_inf - x.i_)
            i_ += x.i_;
        else
            i_ = pos_inf;
        return *this;
    }
    if (i_ > neg_inf - x.i_)
        i_ += x.i_;
    else
        i_ = neg_inf;
    return *this;
}

template <class I>
saturate<I>&
saturate<I>::operator*=(saturate x)
{
    switch (i_)
    {
    case 0:
        switch (x.i_)
        {
        case pos_inf:
        case neg_inf:
        case nan:
            i_ = nan;
        }
        return *this;
    case pos_inf:
        switch (x.i_)
        {
        case nan:
        case 0:
            i_ = nan;
            return *this;
        }
        if (x.i_ < 0)
            i_ = neg_inf;
        return *this;
    case nan:
        return *this;
    case neg_inf:
        switch (x.i_)
        {
        case nan:
        case 0:
            i_ = nan;
            return *this;
        }
        if (x.i_ < 0)
            i_ = pos_inf;
        return *this;
    }
    switch (x.i_)
    {
    case 0:
        i_ = 0;
        return *this;
    case nan:
        i_ = nan;
        return *this;
    case pos_inf:
        if (i_ < 0)
            i_ = neg_inf;
        else
            i_ = pos_inf;
        return *this;
    case neg_inf:
        if (i_ < 0)
            i_ = pos_inf;
        else
            i_ = neg_inf;
        return *this;
    }
    int s = (i_ < 0 ? -1 : 1) * (x.i_ < 0 ? -1 : 1);
    i_ = i_ < 0 ? -i_ : i_;
    int_type x_i_ = x.i_ < 0 ? -x.i_ : x.i_;
    if (i_ <= pos_inf / x_i_)
        i_ *= x_i_;
    else
        i_ = pos_inf;
    i_ *= s;
    return *this;
}

template <class I>
saturate<I>&
saturate<I>::operator/=(saturate x)
{
    switch (x.i_)
    {
    case pos_inf:
    case neg_inf:
        switch (i_)
        {
        case pos_inf:
        case neg_inf:
        case nan:
            i_ = nan;
            break;
        default:
            i_ = 0;
            break;
        }
        return *this;
    case nan:
        i_ = nan;
        return *this;
    case 0:
        switch (i_)
        {
        case pos_inf:
        case neg_inf:
        case nan:
            return *this;
        case 0:
            i_ = nan;
            return *this;
        }
        if (i_ > 0)
            i_ = pos_inf;
        else
            i_ = neg_inf;
        return *this;
    }
    switch (i_)
    {
    case 0:
    case nan:
        return *this;
    case pos_inf:
    case neg_inf:
        if (x.i_ < 0)
            i_ = -i_;
        return *this;
    }
    i_ /= x.i_;
    return *this;
}

template <class I>
saturate<I>&
saturate<I>::operator%=(saturate x)
{
//    *this -= *this / x * x;  // definition
    switch (x.i_)
    {
    case nan:
    case neg_inf:
    case 0:
    case pos_inf:
        i_ = nan;
        return *this;
    }
    switch (i_)
    {
    case neg_inf:
    case pos_inf:
        i_ = nan;
    case nan:
        return *this;
    }
    i_ %= x.i_;
    return *this;
}

// Demo overflow-safe integral durations ranging from picoseconds resolution to millennium resolution
typedef std::datetime::duration<saturate<long long>, std::pico                 > picoseconds;
typedef std::datetime::duration<saturate<long long>, std::nano                 > nanoseconds;
typedef std::datetime::duration<saturate<long long>, std::micro                > microseconds;
typedef std::datetime::duration<saturate<long long>, std::milli                > milliseconds;
typedef std::datetime::duration<saturate<long long>                            > seconds;
typedef std::datetime::duration<saturate<long long>, std::ratio<         60LL> > minutes;
typedef std::datetime::duration<saturate<long long>, std::ratio<       3600LL> > hours;
typedef std::datetime::duration<saturate<long long>, std::ratio<      86400LL> > days;
typedef std::datetime::duration<saturate<long long>, std::ratio<   31556952LL> > years;
typedef std::datetime::duration<saturate<long long>, std::ratio<31556952000LL> > millennium;

}  // User2

// Demonstrate custom promotion rules (needed only if there are no implicit conversions)
namespace User2 { namespace detail {

template <class T1, class T2, bool = tmp::is_integral<T1>::value>
struct promote_helper;

template <class T1, class T2>
struct promote_helper<T1, saturate<T2>, true>  // integral
{
    typedef typename std::common_type<T1, T2>::type rep;
    typedef User2::saturate<rep> type;
};

template <class T1, class T2>
struct promote_helper<T1, saturate<T2>, false>  // floating
{
    typedef T1 type;
};

} }

namespace std
{

template <class T1, class T2>
struct common_type<User2::saturate<T1>, User2::saturate<T2> >
{
    typedef typename common_type<T1, T2>::type rep;
    typedef User2::saturate<rep> type;
};

template <class T1, class T2>
struct common_type<T1, User2::saturate<T2> >
    : User2::detail::promote_helper<T1, User2::saturate<T2> > {};

template <class T1, class T2>
struct common_type<User2::saturate<T1>, T2>
    : User2::detail::promote_helper<T2, User2::saturate<T1> > {};


// Demonstrate specialization of duration_values:

namespace datetime {

template <class I>
struct duration_values<User2::saturate<I> >
{
    typedef User2::saturate<I> Rep;
public:
    static Rep zero() {return Rep(0);}
    static Rep max()  {return Rep(Rep::pos_inf-1);}
    static Rep min()  {return -max();}
};

}

}

#include <iostream>

void testUser2()
{
    std::cout << "*************\n";
    std::cout << "* testUser2 *\n";
    std::cout << "*************\n";
    using namespace User2;
    typedef seconds::rep sat;
    years yr(sat(100));
    std::cout << "100 years expressed as years = " << yr.count() << '\n';
    nanoseconds ns = yr;
    std::cout << "100 years expressed as nanoseconds = " << ns.count() << '\n';
    ns += yr;
    std::cout << "200 years expressed as nanoseconds = " << ns.count() << '\n';
    ns += yr;
    std::cout << "300 years expressed as nanoseconds = " << ns.count() << '\n';
//    yr = ns;  // does not compile
    std::cout << "yr = ns;  // does not compile\n";
//    picoseconds ps1 = yr;  // does not compile, compile-time overflow in ratio arithmetic
    std::cout << "ps = yr;  // does not compile\n";
    ns = yr;
    picoseconds ps = ns;
    std::cout << "100 years expressed as picoseconds = " << ps.count() << '\n';
    ps = ns / sat(1000);
    std::cout << "0.1 years expressed as picoseconds = " << ps.count() << '\n';
    yr = years(sat(-200000000));
    std::cout << "200 million years ago encoded in years: " << yr.count() << '\n';
    days d = std::datetime::duration_cast<days>(yr);
    std::cout << "200 million years ago encoded in days: " << d.count() << '\n';
    millennium c = std::datetime::duration_cast<millennium>(yr);
    std::cout << "200 million years ago encoded in millennium: " << c.count() << '\n';
    std::cout << "Demonstrate \"uninitialized protection\" behavior:\n";
    seconds sec;
    for (++sec; sec < seconds(sat(10)); ++sec)
        ;
    std::cout << sec.count() << '\n';
    std::cout << "\n";
}

void testStdUser()
{
    std::cout << "***************\n";
    std::cout << "* testStdUser *\n";
    std::cout << "***************\n";
    using namespace std::datetime;
    hours hr = hours(100);
    std::cout << "100 hours expressed as hours = " << hr.count() << '\n';
    nanoseconds ns = hr;
    std::cout << "100 hours expressed as nanoseconds = " << ns.count() << '\n';
    ns += hr;
    std::cout << "200 hours expressed as nanoseconds = " << ns.count() << '\n';
    ns += hr;
    std::cout << "300 hours expressed as nanoseconds = " << ns.count() << '\n';
//    hr = ns;  // does not compile
    std::cout << "hr = ns;  // does not compile\n";
//    hr * ns;  // does not compile
    std::cout << "hr * ns;  // does not compile\n";
    duration<double> fs(2.5);
    std::cout << "duration<double> has count() = " << fs.count() << '\n';
//    seconds sec = fs;  // does not compile
    std::cout << "seconds sec = duration<double> won't compile\n";
    seconds sec = duration_cast<seconds>(fs);
    std::cout << "seconds has count() = " << sec.count() << '\n';
    std::cout << "\n";
}

//  timeval clock demo
//     Demonstrate the use of a timeval-like struct to be used as the representation
//     type for both duraiton and time_point.

namespace timeval_demo
{

class xtime {
private:
    long tv_sec;
    long tv_usec;

    void fixup() {
        if (tv_usec < 0) {
            tv_usec += 1000000;
            --tv_sec;
        }
    }

public:

    explicit xtime(long sec, long usec) {
        tv_sec = sec;
        tv_usec = usec;
        if (tv_usec < 0 || tv_usec >= 1000000) {
            tv_sec += tv_usec / 1000000;
            tv_usec %= 1000000;
            fixup();
        }
    }

    explicit xtime(long long usec)
    {
        tv_usec = static_cast<long>(usec % 1000000);
        tv_sec  = static_cast<long>(usec / 1000000);
        fixup();
    }
    
    // explicit
    operator long long() const {return static_cast<long long>(tv_sec) * 1000000 + tv_usec;}

    xtime& operator += (xtime rhs) {
        tv_sec += rhs.tv_sec;
        tv_usec += rhs.tv_usec;
        if (tv_usec >= 1000000) {
            tv_usec -= 1000000;
            ++tv_sec;
        }
        return *this;
    }

    xtime& operator -= (xtime rhs) {
        tv_sec -= rhs.tv_sec;
        tv_usec -= rhs.tv_usec;
        fixup();
        return *this;
    }

    xtime& operator %= (xtime rhs) {
        long long t = tv_sec * 1000000 + tv_usec;
        long long r = rhs.tv_sec * 1000000 + rhs.tv_usec;
        t %= r;
        tv_sec = t / 1000000;
        tv_usec = t % 1000000;
        fixup();
        return *this;
    }

    friend xtime operator+(xtime x, xtime y) {return x += y;}
    friend xtime operator-(xtime x, xtime y) {return x -= y;}
    friend xtime operator%(xtime x, xtime y) {return x %= y;}

    friend bool operator==(xtime x, xtime y)
        { return (x.tv_sec == y.tv_sec && x.tv_usec == y.tv_usec); }

    friend bool operator<(xtime x, xtime y) {
        if (x.tv_sec == y.tv_sec)
            return (x.tv_usec < y.tv_usec);
        return (x.tv_sec < y.tv_sec);
    }

    friend bool operator!=(xtime x, xtime y) { return !(x == y); }
    friend bool operator> (xtime x, xtime y) { return y < x; }
    friend bool operator<=(xtime x, xtime y) { return !(y < x); }
    friend bool operator>=(xtime x, xtime y) { return !(x < y); }

    friend std::ostream& operator<<(std::ostream& os, xtime x)
        {return os << '{' << x.tv_sec << ',' << x.tv_usec << '}';}
};

class xtime_clock
{
public:
    typedef xtime                                  rep;
    typedef std::micro                             period;
    typedef std::datetime::duration<rep, period>   duration;
    typedef std::datetime::time_point<xtime_clock> time_point;

    static time_point now();
};

xtime_clock::time_point
xtime_clock::now()
{
    time_point t(duration(xtime(0)));
    gettimeofday((timeval*)&t, 0);
    return t;
}

void test_xtime_clock()
{
    using namespace std::datetime;
    std::cout << "timeval_demo system clock test\n";
    std::cout << "sizeof xtime_clock::time_point = " << sizeof(xtime_clock::time_point) << '\n';
    std::cout << "sizeof xtime_clock::duration = " << sizeof(xtime_clock::duration) << '\n';
    std::cout << "sizeof xtime_clock::rep = " << sizeof(xtime_clock::rep) << '\n';
    xtime_clock::duration delay(milliseconds(5));
    xtime_clock::time_point start = xtime_clock::now();
    while (xtime_clock::now() - start <= delay)
        ;
    xtime_clock::time_point stop = xtime_clock::now();
    xtime_clock::duration elapsed = stop - start;
    std::cout << "paused " << nanoseconds(elapsed).count() << " nanoseconds\n";
}

}  // timeval_demo

// Handle duration with resolution not known until run time

namespace runtime_resolution
{

class duration
{
public:
    typedef long long rep;
private:
    rep rep_;

    static const double ticks_per_nanosecond;

public:
    typedef std::datetime::duration<double, std::nano> tonanosec;

    duration() {} // = default;
    explicit duration(const rep& r) : rep_(r) {}

    // conversions
    explicit duration(const tonanosec& d)
            : rep_(static_cast<rep>(d.count() * ticks_per_nanosecond)) {}

    // explicit
       operator tonanosec() const {return tonanosec(rep_/ticks_per_nanosecond);}

    // observer

    rep count() const {return rep_;}

    // arithmetic

    duration& operator+=(const duration& d) {rep_ += d.rep_; return *this;}
    duration& operator-=(const duration& d) {rep_ += d.rep_; return *this;}
    duration& operator*=(rep rhs)           {rep_ *= rhs; return *this;}
    duration& operator/=(rep rhs)           {rep_ /= rhs; return *this;}

    duration  operator+() const {return *this;}
    duration  operator-() const {return duration(-rep_);}
    duration& operator++()      {++rep_; return *this;}
    duration  operator++(int)   {return duration(rep_++);}
    duration& operator--()      {--rep_; return *this;}
    duration  operator--(int)   {return duration(rep_--);}

    friend duration operator+(duration x, duration y) {return x += y;}
    friend duration operator-(duration x, duration y) {return x -= y;}
    friend duration operator*(duration x, rep y)      {return x *= y;}
    friend duration operator*(rep x, duration y)      {return y *= x;}
    friend duration operator/(duration x, rep y)      {return x /= y;}

    friend bool operator==(duration x, duration y) {return x.rep_ == y.rep_;}
    friend bool operator!=(duration x, duration y) {return !(x == y);}
    friend bool operator< (duration x, duration y) {return x.rep_ < y.rep_;}
    friend bool operator<=(duration x, duration y) {return !(y < x);}
    friend bool operator> (duration x, duration y) {return y < x;}
    friend bool operator>=(duration x, duration y) {return !(x < y);}
};

static
double
init_duration()
{
    mach_timebase_info_data_t MachInfo;
    mach_timebase_info(&MachInfo);
    return static_cast<double>(MachInfo.denom) / MachInfo.numer;
}

const double duration::ticks_per_nanosecond = init_duration();

class clock;

class time_point
{
public:
    typedef runtime_resolution::clock clock;
    typedef long long rep;
private:
    rep rep_;


    rep count() const {return rep_;}
public:

    time_point() : rep_(0) {}
    explicit time_point(const duration& d)
        : rep_(d.count()) {}

    // arithmetic

    time_point& operator+=(const duration& d) {rep_ += d.count(); return *this;}
    time_point& operator-=(const duration& d) {rep_ -= d.count(); return *this;}

    friend time_point operator+(time_point x, duration y) {return x += y;}
    friend time_point operator+(duration x, time_point y) {return y += x;}
    friend time_point operator-(time_point x, duration y) {return x -= y;}
    friend duration operator-(time_point x, time_point y) {return duration(x.rep_ - y.rep_);}
};

class clock
{
public:
    typedef duration::rep rep;
    typedef runtime_resolution::duration duration;
    typedef runtime_resolution::time_point time_point;

    static time_point now() {return time_point(duration(mach_absolute_time()));}
};

void test()
{
    using namespace std::datetime;
    std::cout << "runtime_resolution test\n";
    clock::duration delay(std::datetime::milliseconds(5));
    clock::time_point start = clock::now();
    while (clock::now() - start <= delay)
      ;
    clock::time_point stop = clock::now();
    clock::duration elapsed = stop - start;
    std::cout << "paused " << nanoseconds(duration_cast<nanoseconds>(duration::tonanosec(elapsed))).count()
                           << " nanoseconds\n";
}

}  // runtime_resolution

// miscellaneous tests and demos:

#include <cassert>
#include <iostream>

using namespace std::datetime;

void physics_function(duration<double> d)
{
    std::cout << "d = " << d.count() << '\n';
}

void drive_physics_function()
{
    physics_function(nanoseconds(3));
    physics_function(hours(3));
    physics_function(duration<double>(2./3));
    std::cout.precision(16);
    physics_function( hours(3) + nanoseconds(-3) );
}

void test_range()
{
    using namespace std::datetime;
    hours h1 = hours(24 * ( 365 * 292 + 292/4));
    nanoseconds n1 = h1 + nanoseconds(1);
    nanoseconds delta = n1 - h1;
    std::cout << "292 years of hours = " << h1.count() << "hr\n";
    std::cout << "Add a nanosecond = " << n1.count() << "ns\n";
    std::cout << "Find the difference = " << delta.count() << "ns\n";
}

void test_extended_range()
{
    using namespace std::datetime;
    hours h1 = hours(24 * ( 365 * 244000 + 244000/4));
    /*auto*/ microseconds u1 = h1 + microseconds(1);
    /*auto*/ microseconds delta = u1 - h1;
    std::cout << "244,000 years of hours = " << h1.count() << "hr\n";
    std::cout << "Add a microsecond = " << u1.count() << "us\n";
    std::cout << "Find the difference = " << delta.count() << "us\n";
}

template <class Rep, class Period>
void inspect_duration(std::datetime::duration<Rep, Period> d, const std::string& name)
{
    typedef std::datetime::duration<Rep, Period> Duration;
    std::cout << "********* " << name << " *********\n";
    std::cout << "The period of " << name << " is " << (double)Period::num/Period::den << " seconds.\n";
    std::cout << "The frequency of " << name << " is " << (double)Period::den/Period::num << " Hz.\n";
    std::cout << "The representation is ";
    if (tmp::is_floating_point<Rep>::value)
    {
        std::cout << "floating point\n";
        std::cout << "The precision is the most significant ";
        std::cout << std::numeric_limits<Rep>::digits10 << " decimal digits.\n";
    }
    else if (tmp::is_integral<Rep>::value)
    {
        std::cout << "integral\n";
        d = Duration(Rep(1));
        std::datetime::duration<double> dsec = d;
        std::cout << "The precision is " << dsec.count() << " seconds.\n";
    }
    else
    {
        std::cout << "a class type\n";
        d = Duration(Rep(1));
        std::datetime::duration<double> dsec = d;
        std::cout << "The precision is " << dsec.count() << " seconds.\n";
    }
    d = Duration(std::numeric_limits<Rep>::max());
    using namespace std::datetime;
    using namespace std;
    typedef duration<double, ratio_multiply<ratio<24*3652425,10000>, hours::period>::type> Years;
    Years years = d;
    std::cout << "The range is +/- " << years.count() << " years.\n";
    std::cout << "sizeof(" << name << ") = " << sizeof(d) << '\n';
}

void inspect_all()
{
    using namespace std::datetime;
    std::cout.precision(6);
    inspect_duration(nanoseconds(), "nanoseconds");
    inspect_duration(microseconds(), "microseconds");
    inspect_duration(milliseconds(), "milliseconds");
    inspect_duration(seconds(), "seconds");
    inspect_duration(minutes(), "minutes");
    inspect_duration(hours(), "hours");
    inspect_duration(duration<double>(), "duration<double>");
}

void test_milliseconds()
{
    using namespace std::datetime;
    milliseconds ms(250);
    ms += milliseconds(1);
    milliseconds ms2(150);
    milliseconds msdiff = ms - ms2;
    if (msdiff == milliseconds(101))
        std::cout << "success\n";
    else
        std::cout << "failure: " << msdiff.count() << '\n';
}

    using namespace std;
    using namespace std::datetime;

// Example round_up utility:  converts d to To, rounding up for inexact conversions
//   Being able to *easily* write this function is a major feature!
template <class To, class Rep, class Period>
To
round_up(duration<Rep, Period> d)
{
    To result = duration_cast<To>(d);
    if (result < d)
        ++result;
    return result;
}

// demonstrate interaction with xtime-like facility:

using namespace std::datetime;

struct xtime
{
    long sec;
    unsigned long usec;
};

template <class Rep, class Period>
xtime
to_xtime_truncate(duration<Rep, Period> d)
{
    xtime xt;
    xt.sec = duration_cast<seconds>(d).count();
    xt.usec = duration_cast<microseconds>(d - seconds(xt.sec)).count();
    return xt;
}

template <class Rep, class Period>
xtime
to_xtime_round_up(duration<Rep, Period> d)
{
    xtime xt;
    xt.sec = duration_cast<seconds>(d).count();
    xt.usec = round_up<microseconds>(d - seconds(xt.sec)).count();
    return xt;
}

microseconds
from_xtime(xtime xt)
{
    return seconds(xt.sec) + microseconds(xt.usec);
}

void print(xtime xt)
{
    cout << '{' << xt.sec << ',' << xt.usec << "}\n";
}

void test_with_xtime()
{
    cout << "test_with_xtime\n";
    xtime xt = to_xtime_truncate(seconds(3) + milliseconds(251));
    print(xt);
    milliseconds ms = duration_cast<milliseconds>(from_xtime(xt));
    cout << ms.count() << " milliseconds\n";
    xt = to_xtime_round_up(ms);
    print(xt);
    xt = to_xtime_truncate(seconds(3) + nanoseconds(999));
    print(xt);
    xt = to_xtime_round_up(seconds(3) + nanoseconds(999));
    print(xt);
}

void test_system_clock()
{
    cout << "system_clock test" << endl;
    system_clock::duration delay = milliseconds(5);
    system_clock::time_point start = system_clock::now();
    while (system_clock::now() - start <= delay)
        ;
    system_clock::time_point stop = system_clock::now();
    system_clock::duration elapsed = stop - start;
    cout << "paused " << nanoseconds(elapsed).count() << " nanoseconds\n";
    start = system_clock::now();
    stop = system_clock::now();
    cout << "system_clock resolution estimate: " << nanoseconds(stop-start).count() << " nanoseconds\n";
}

void test_monotonic_clock()
{
    cout << "monotonic_clock test" << endl;
    monotonic_clock::duration delay = milliseconds(5);
    monotonic_clock::time_point start = monotonic_clock::now();
    while (monotonic_clock::now() - start <= delay)
        ;
    monotonic_clock::time_point stop = monotonic_clock::now();
    monotonic_clock::duration elapsed = stop - start;
    cout << "paused " << nanoseconds(elapsed).count() << " nanoseconds\n";
    start = monotonic_clock::now();
    stop = monotonic_clock::now();
    cout << "monotonic_clock resolution estimate: " << nanoseconds(stop-start).count() << " nanoseconds\n";
}

void test_hi_resolution_clock()
{
    cout << "high_resolution_clock test" << endl;
    high_resolution_clock::duration delay = milliseconds(5);
    high_resolution_clock::time_point start = high_resolution_clock::now();
    while (high_resolution_clock::now() - start <= delay)
      ;
    high_resolution_clock::time_point stop = high_resolution_clock::now();
    high_resolution_clock::duration elapsed = stop - start;
    cout << "paused " << nanoseconds(elapsed).count() << " nanoseconds\n";
    start = high_resolution_clock::now();
    stop = high_resolution_clock::now();
    cout << "high_resolution_clock resolution estimate: " << nanoseconds(stop-start).count() << " nanoseconds\n";
}

void test_mixed_clock()
{
    cout << "mixed clock test" << endl;
    high_resolution_clock::time_point hstart = high_resolution_clock::now();
    cout << "Add 5 milliseconds to a high_resolution_clock::time_point\n";
    monotonic_clock::time_point mend = hstart + milliseconds(5);
    bool b = hstart == mend;
    system_clock::time_point sstart = system_clock::now();
    std::cout << "Subtracting system_clock::time_point from monotonic_clock::time_point doesn't compile\n";
//  mend - sstart; // doesn't compile
    cout << "subtract high_resolution_clock::time_point from monotonic_clock::time_point"
            " and add that to a system_clock::time_point\n";
    system_clock::time_point send = sstart + duration_cast<system_clock::duration>(mend - hstart);
    cout << "subtract two system_clock::time_point's and output that in microseconds:\n";
    microseconds ms = send - sstart;
    cout << ms.count() << " microseconds\n";
}

void test_c_mapping()
{
    cout << "C map test\n";
    using namespace std::datetime;
    system_clock::time_point t1 = system_clock::now();
    std::time_t c_time = system_clock::to_time_t(t1);
    std::tm* tmptr = std::localtime(&c_time);
    std::cout << "It is now " << tmptr->tm_hour << ':' << tmptr->tm_min << ':' << tmptr->tm_sec << ' '
              << tmptr->tm_year + 1900 << '-' << tmptr->tm_mon + 1 << '-' << tmptr->tm_mday << '\n';
    c_time = std::mktime(tmptr);
    system_clock::time_point t2 = system_clock::from_time_t(c_time);
    microseconds ms = t1 - t2;
    std::cout << "Round-tripping through the C interface truncated the precision by " << ms.count() << " microseconds\n";
}

void test_duration_division()
{
    cout << hours(3) / milliseconds(5) << '\n';
    cout << milliseconds(5) / hours(3) << '\n';
    cout << hours(1) / milliseconds(1) << '\n';
}

namespace I_dont_like_the_default_duration_behavior
{

// Here's how you override the duration's default constructor to do anything you want (in this case zero)

template <class R>
class zero_default
{
public:
    typedef R rep;

private:
    rep rep_;
public:
    zero_default(rep i = 0) : rep_(i) {}
    operator rep() const {return rep_;}

    zero_default& operator+=(zero_default x) {rep_ += x.rep_; return *this;}
    zero_default& operator-=(zero_default x) {rep_ -= x.rep_; return *this;}
    zero_default& operator*=(zero_default x) {rep_ *= x.rep_; return *this;}
    zero_default& operator/=(zero_default x) {rep_ /= x.rep_; return *this;}

    zero_default  operator+ () const {return *this;}
    zero_default  operator- () const {return zero_default(-rep_);}
    zero_default& operator++()       {++rep_; return *this;}
    zero_default  operator++(int)    {return zero_default(rep_++);}
    zero_default& operator--()       {--rep_; return *this;}
    zero_default  operator--(int)    {return zero_default(rep_--);}

    friend zero_default operator+(zero_default x, zero_default y) {return x += y;}
    friend zero_default operator-(zero_default x, zero_default y) {return x -= y;}
    friend zero_default operator*(zero_default x, zero_default y) {return x *= y;}
    friend zero_default operator/(zero_default x, zero_default y) {return x /= y;}

    friend bool operator==(zero_default x, zero_default y) {return x.rep_ == y.rep_;}
    friend bool operator!=(zero_default x, zero_default y) {return !(x == y);}
    friend bool operator< (zero_default x, zero_default y) {return x.rep_ < y.rep_;}
    friend bool operator<=(zero_default x, zero_default y) {return !(y < x);}
    friend bool operator> (zero_default x, zero_default y) {return y < x;}
    friend bool operator>=(zero_default x, zero_default y) {return !(x < y);}
};

typedef std::datetime::duration<zero_default<long long>, std::nano        > nanoseconds;
typedef std::datetime::duration<zero_default<long long>, std::micro       > microseconds;
typedef std::datetime::duration<zero_default<long long>, std::milli       > milliseconds;
typedef std::datetime::duration<zero_default<long long>                   > seconds;
typedef std::datetime::duration<zero_default<long long>, std::ratio<60>   > minutes;
typedef std::datetime::duration<zero_default<long long>, std::ratio<3600> > hours;

void test()
{
    milliseconds ms;
    cout << ms.count() << '\n';
}

}  // I_dont_like_the_default_duration_behavior

// Build a min for two time_points

template <class Rep, class Period>
void
print_duration(ostream& os, duration<Rep, Period> d)
{
    os << d.count() << " * " << Period::num << '/' << Period::den << " seconds\n";
}

// Example min utility:  returns the earliest time_point
//   Being able to *easily* write this function is a major feature!
template <class Clock, class Duration1, class Duration2>
inline
typename common_type<time_point<Clock, Duration1>, time_point<Clock, Duration2> >::type
min(time_point<Clock, Duration1> t1, time_point<Clock, Duration2> t2)
{
    return t2 < t1 ? t2 : t1;
}

void test_min()
{
    typedef time_point<system_clock, common_type<system_clock::duration, seconds>::type> T1;
    typedef time_point<system_clock, common_type<system_clock::duration, nanoseconds>::type> T2;
    typedef common_type<T1, T2>::type T3;
    /*auto*/ T1 t1 = system_clock::now() + seconds(3);
    /*auto*/ T2 t2 = system_clock::now() + nanoseconds(3);
    /*auto*/ T3 t3 = min(t1, t2);
    print_duration(cout, t1 - t3);
    print_duration(cout, t2 - t3);
}

void explore_limits()
{
    typedef duration<long long, ratio_multiply<ratio<24*3652425,10000>, hours::period>::type> Years;
    monotonic_clock::time_point t1( Years(250));
    monotonic_clock::time_point t2(-Years(250));
    // nanosecond resolution is likely to overflow.  "up cast" to microseconds.
    //   The "up cast" trades precision for range.
    microseconds d = time_point_cast<microseconds>(t1) - time_point_cast<microseconds>(t2);
    cout << d.count() << " microseconds\n";
}

void manipulate_clock_object(system_clock clock)
{
    system_clock::duration delay = milliseconds(5);
    system_clock::time_point start = clock.now();
    while (clock.now() - start <= delay)
      ;
    system_clock::time_point stop = clock.now();
    system_clock::duration elapsed = stop - start;
    cout << "paused " << nanoseconds(elapsed).count() << " nanoseconds\n";
};

template <long long speed>
struct cycle_count
{
    typedef typename ratio_multiply<ratio<speed>, mega>::type frequency;  // Mhz
    typedef typename ratio_divide<ratio<1>, frequency>::type period;
    typedef long long rep;
    typedef std::datetime::duration<rep, period> duration;
    typedef std::datetime::time_point<cycle_count> time_point;

    static time_point now()
    {
        static long long tick = 0;
        // return exact cycle count
        return time_point(duration(++tick));  // fake access to clock cycle count
    }
};

template <long long speed>
struct approx_cycle_count
{
    static const long long frequency = speed * 1000000;  // MHz
    typedef nanoseconds duration;
    typedef duration::rep rep;
    typedef duration::period period;
    static const long long nanosec_per_sec = period::den;
    typedef std::datetime::time_point<approx_cycle_count> time_point;

    static time_point now()
    {
        static long long tick = 0;
        // return cycle count as an approximate number of nanoseconds
        // compute as if nanoseconds is only duration in the std::lib
        return time_point(duration(++tick * nanosec_per_sec / frequency));
    }
};

void cycle_count_delay()
{
    {
    typedef cycle_count<400> clock;
    cout << "\nSimulated " << clock::frequency::num / mega::num << "MHz clock which has a tick period of "
         << duration<double, nano>(clock::duration(1)).count() << " nanoseconds\n";
    nanoseconds delayns(500);
    clock::duration delay = duration_cast<clock::duration>(delayns);
    cout << "delay = " << delayns.count() << " nanoseconds which is " << delay.count() << " cycles\n";
    clock::time_point start = clock::now();
    clock::time_point stop = start + delay;
    while (clock::now() < stop)  // no multiplies or divides in this loop
        ;
    clock::time_point end = clock::now();
    clock::duration elapsed = end - start;
    cout << "paused " << elapsed.count() << " cycles ";
    cout << "which is " << duration_cast<nanoseconds>(elapsed).count() << " nanoseconds\n";
    }
    {
    typedef approx_cycle_count<400> clock;
    cout << "\nSimulated " << clock::frequency / 1000000 << "MHz clock modeled with nanoseconds\n";
    clock::duration delay = nanoseconds(500);
    cout << "delay = " << delay.count() << " nanoseconds\n";
    clock::time_point start = clock::now();
    clock::time_point stop = start + delay;
    while (clock::now() < stop) // 1 multiplication and 1 division in this loop
        ;
    clock::time_point end = clock::now();
    clock::duration elapsed = end - start;
    cout << "paused " << elapsed.count() << " nanoseconds\n";
    }
    {
    typedef cycle_count<1500> clock;
    cout << "\nSimulated " << clock::frequency::num / mega::num << "MHz clock which has a tick period of "
         << duration<double, nano>(clock::duration(1)).count() << " nanoseconds\n";
    nanoseconds delayns(500);
    clock::duration delay = duration_cast<clock::duration>(delayns);
    cout << "delay = " << delayns.count() << " nanoseconds which is " << delay.count() << " cycles\n";
    clock::time_point start = clock::now();
    clock::time_point stop = start + delay;
    while (clock::now() < stop)  // no multiplies or divides in this loop
        ;
    clock::time_point end = clock::now();
    clock::duration elapsed = end - start;
    cout << "paused " << elapsed.count() << " cycles ";
    cout << "which is " << duration_cast<nanoseconds>(elapsed).count() << " nanoseconds\n";
    }
    {
    typedef approx_cycle_count<1500> clock;
    cout << "\nSimulated " << clock::frequency / 1000000 << "MHz clock modeled with nanoseconds\n";
    clock::duration delay = nanoseconds(500);
    cout << "delay = " << delay.count() << " nanoseconds\n";
    clock::time_point start = clock::now();
    clock::time_point stop = start + delay;
    while (clock::now() < stop) // 1 multiplication and 1 division in this loop
        ;
    clock::time_point end = clock::now();
    clock::duration elapsed = end - start;
    cout << "paused " << elapsed.count() << " nanoseconds\n";
    }
}

void test_special_values()
{
    std::cout << "duration<unsigned>::min().count()  = " << duration<unsigned>::min().count() << '\n';
    std::cout << "duration<unsigned>::zero().count() = " << duration<unsigned>::zero().count() << '\n';
    std::cout << "duration<unsigned>::max().count()  = " << duration<unsigned>::max().count() << '\n';
    std::cout << "duration<int>::min().count()       = " << duration<int>::min().count() << '\n';
    std::cout << "duration<int>::zero().count()      = " << duration<int>::zero().count() << '\n';
    std::cout << "duration<int>::max().count()       = " << duration<int>::max().count() << '\n';
}

int main()
{
    basic_examples();
    testStdUser();
    testUser1();
    testUser2();
    drive_physics_function();
    test_range();
    test_extended_range();
    inspect_all();
    test_milliseconds();
    test_with_xtime();
    test_system_clock();
    test_monotonic_clock();
    test_hi_resolution_clock();
    test_mixed_clock();
    timeval_demo::test_xtime_clock();
    runtime_resolution::test();
    test_c_mapping();
    test_duration_division();
    I_dont_like_the_default_duration_behavior::test();
    test_min();
#if VARIADIC_COMMON_TYPE
    inspect_duration(common_type<duration<double>, hours, microseconds>::type(),
                    "common_type<duration<double>, hours, microseconds>::type");
#endif
    explore_limits();
    manipulate_clock_object(system_clock());
    duration<double, milli> d = milliseconds(3) * 2.5;
    inspect_duration(milliseconds(3) * 2.5, "milliseconds(3) * 2.5");
    cout << d.count() << '\n';
//    milliseconds ms(3.5);  // doesn't compile
    cout << "milliseconds ms(3.5) doesn't compile\n";
    cycle_count_delay();
    test_special_values();
}

/*
Output

Running basic examples
sleep_for 3000000 microseconds
sleep_for 1 microseconds
sleep_until    10:47:17.728293 which is 4499340 microseconds away
try_lock_for 30000 microseconds
try_lock_until 10:47:17.728285 which is 4499303 microseconds away
wait_for 60000000 microseconds
wait_until     10:47:17.728285 which is 4499264 microseconds away
sleep_for 250000 microseconds
sleep_until    10:47:14.729077 which is 1499979 microseconds away
***************
* testStdUser *
***************
100 hours expressed as hours = 100
100 hours expressed as nanoseconds = 360000000000000
200 hours expressed as nanoseconds = 720000000000000
300 hours expressed as nanoseconds = 1080000000000000
hr = ns;  // does not compile
hr * ns;  // does not compile
duration<double> has count() = 2.5
seconds sec = duration<double> won't compile
seconds has count() = 2

*************
* testUser1 *
*************
Speed = 24.5872 meters/sec
Acceleration = 9.81456 meters/sec^2
Distance = 13.5204 meters
There are 125/201168 miles/meter which is approximately 0.000621371
There are 201168/125 meters/mile which is approximately 1609.34
1 attosecond is 1e-18 seconds
sec = as;  // compiles
1 second is 1e+18 attoseconds
as = sec;  // compiles

*************
* testUser2 *
*************
100 years expressed as years = 100
100 years expressed as nanoseconds = 3155695200000000000
200 years expressed as nanoseconds = 6311390400000000000
300 years expressed as nanoseconds = inf
yr = ns;  // does not compile
ps = yr;  // does not compile
100 years expressed as picoseconds = inf
0.1 years expressed as picoseconds = 3155695200000000000
200 million years ago encoded in years: -200000000
200 million years ago encoded in days: -73048500000
200 million years ago encoded in millennium: -200000
Demonstrate "uninitialized protection" behavior:
nan

d = 3e-09
d = 10800
d = 0.666667
d = 10799.999999997
292 years of hours = 2559672hr
Add a nanosecond = 9214819200000000001ns
Find the difference = 1ns
244,000 years of hours = 2138904000hr
Add a microsecond = 7700054400000000001us
Find the difference = 1us
********* nanoseconds *********
The period of nanoseconds is 1e-09 seconds.
The frequency of nanoseconds is 1e+09 Hz.
The representation is integral
The precision is 1e-09 seconds.
The range is +/- 292.277 years.
sizeof(nanoseconds) = 8
********* microseconds *********
The period of microseconds is 1e-06 seconds.
The frequency of microseconds is 1e+06 Hz.
The representation is integral
The precision is 1e-06 seconds.
The range is +/- 292277 years.
sizeof(microseconds) = 8
********* milliseconds *********
The period of milliseconds is 0.001 seconds.
The frequency of milliseconds is 1000 Hz.
The representation is integral
The precision is 0.001 seconds.
The range is +/- 2.92277e+08 years.
sizeof(milliseconds) = 8
********* seconds *********
The period of seconds is 1 seconds.
The frequency of seconds is 1 Hz.
The representation is integral
The precision is 1 seconds.
The range is +/- 2.92277e+11 years.
sizeof(seconds) = 8
********* minutes *********
The period of minutes is 60 seconds.
The frequency of minutes is 0.0166667 Hz.
The representation is integral
The precision is 60 seconds.
The range is +/- 4083.06 years.
sizeof(minutes) = 4
********* hours *********
The period of hours is 3600 seconds.
The frequency of hours is 0.000277778 Hz.
The representation is integral
The precision is 3600 seconds.
The range is +/- 244984 years.
sizeof(hours) = 4
********* duration<double> *********
The period of duration<double> is 1 seconds.
The frequency of duration<double> is 1 Hz.
The representation is floating point
The precision is the most significant 15 decimal digits.
The range is +/- 5.69666e+300 years.
sizeof(duration<double>) = 8
success
test_with_xtime
{3,251000}
3251 milliseconds
{3,251000}
{3,0}
{3,1}
system_clock test
paused 5001000 nanoseconds
system_clock resolution estimate: 0 nanoseconds
monotonic_clock test
paused 5000181 nanoseconds
monotonic_clock resolution estimate: 97 nanoseconds
high_resolution_clock test
paused 5000277 nanoseconds
high_resolution_clock resolution estimate: 96 nanoseconds
mixed clock test
Add 5 milliseconds to a high_resolution_clock::time_point
Subtracting system_clock::time_point from monotonic_clock::time_point doesn't compile
subtract high_resolution_clock::time_point from monotonic_clock::time_point and add that to a system_clock::time_point
subtract two system_clock::time_point's and output that in microseconds:
5000 microseconds
timeval_demo system clock test
sizeof xtime_clock::time_point = 8
sizeof xtime_clock::duration = 8
sizeof xtime_clock::rep = 8
paused 5001000 nanoseconds
runtime_resolution test
paused 5000205 nanoseconds
C map test
It is now 10:47:13 2008-4-22
Round-tripping through the C interface truncated the precision by 255445 microseconds
2160000
0
3600000
0
2999998997 * 1/1000000000 seconds
0 * 1/1000000000 seconds
15778476000000000 microseconds
paused 5001000 nanoseconds
********* milliseconds(3) * 2.5 *********
The period of milliseconds(3) * 2.5 is 0.001 seconds.
The frequency of milliseconds(3) * 2.5 is 1000 Hz.
The representation is floating point
The precision is the most significant 15 decimal digits.
The range is +/- 5.69666e+297 years.
sizeof(milliseconds(3) * 2.5) = 8
7.5
milliseconds ms(3.5) doesn't compile

Simulated 400MHz clock which has a tick period of 2.5 nanoseconds
delay = 500 nanoseconds which is 200 cycles
paused 201 cycles which is 502 nanoseconds

Simulated 400MHz clock modeled with nanoseconds
delay = 500 nanoseconds
paused 503 nanoseconds

Simulated 1500MHz clock which has a tick period of 0.666667 nanoseconds
delay = 500 nanoseconds which is 750 cycles
paused 751 cycles which is 500 nanoseconds

Simulated 1500MHz clock modeled with nanoseconds
delay = 500 nanoseconds
paused 500 nanoseconds
duration<unsigned>::min().count()  = 0
duration<unsigned>::zero().count() = 0
duration<unsigned>::max().count()  = 4294967295
duration<int>::min().count()       = -2147483647
duration<int>::zero().count()      = 0
duration<int>::max().count()       = 2147483647
*/

/*
Example disassemblies (to show efficiency).
Disclaimer:  I don't pretend to understand the optimizations made.

Compiled with
g++ -O3 -arch x86_64 -S test2.cpp

x86 64-bit architecture

********************

system_clock::duration
time_subtraction(system_clock::time_point x, system_clock::time_point y)
{
    return x - y;
}

    pushq    %rbp
LCFI25:
    subq    %rsi, %rdi
    movq    %rdi, %rax
    movq    %rsp, %rbp
LCFI26:
    leave
    ret

********************

seconds
time_subtract_to_seconds(system_clock::time_point x, system_clock::time_point y)
{
    return duration_cast<seconds>(x - y);
}

    subq    %rsi, %rdi
    movabsq    $4835703278458516699, %rdx
    pushq    %rbp
LCFI25:
    movq    %rdi, %rax
    sarq    $63, %rdi
    imulq    %rdx
    movq    %rsp, %rbp
LCFI26:
    leave
    sarq    $18, %rdx
    subq    %rdi, %rdx
    movq    %rdx, %rax
    ret

********************

nanoseconds
time_subtract_to_nanoseconds(system_clock::time_point x, system_clock::time_point y)
{
    return x - y;
}

    pushq    %rbp
LCFI25:
    subq    %rsi, %rdi
    imulq    $1000, %rdi, %rax
    movq    %rsp, %rbp
LCFI26:
    leave
    ret

********************

system_clock::time_point
time_plus_duration(system_clock::time_point x, system_clock::duration y)
{
    return x + y;
}

    pushq    %rbp
LCFI37:
    movq    %rsp, %rbp
LCFI38:
    leaq    (%rsi,%rdi), %rax
    leave
    ret

********************

milliseconds
duration_plus_duration(milliseconds x, milliseconds y)
{
    return x + y;
}

    pushq    %rbp
LCFI11:
    leaq    (%rdi,%rsi), %rax
    movq    %rsp, %rbp
LCFI12:
    leave
    ret

********************

nanoseconds
milliseconds_plus_nanoseconds(milliseconds x, nanoseconds y)
{
    return x + y;
}

    imulq    $1000000, %rdi, %rdi
    pushq    %rbp
LCFI20:
    movq    %rsp, %rbp
LCFI21:
    leave
    leaq    (%rdi,%rsi), %rax
    ret

********************

milliseconds
nanoseconds_to_milliseconds(nanoseconds x)
{
    return duration_cast<milliseconds>(x);
}

    movq    %rdi, %rax
    movabsq    $4835703278458516699, %rdx
    pushq    %rbp
LCFI13:
    imulq    %rdx
    sarq    $63, %rdi
    movq    %rsp, %rbp
LCFI14:
    leave
    sarq    $18, %rdx
    subq    %rdi, %rdx
    movq    %rdx, %rax
    ret

********************

nanoseconds
milliseconds_to_nanoseconds(milliseconds x)
{
    return x;
}

    pushq    %rbp
LCFI13:
    imulq    $1000000, %rdi, %rax
    movq    %rsp, %rbp
LCFI14:
    leave
    ret

********************

hours
increment_hours(hours x)
{
    return ++x;
}

    pushq    %rbp
LCFI11:
    leaq    1(%rdi), %rax
    movq    %rsp, %rbp
LCFI12:
    leave
    ret

*/