[/ Copyright (c) 2021 - 2022 Matt Borland Use, modification and distribution are subject to the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) ] [section:ccmath Constexpr CMath] [heading Description] `Constexpr` implementations of the functionality found in `<cmath>` and `<cstdlib>` [@https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p0533r9.pdf proposed for C++23]. In a `constexpr` context the functions will use an implementation defined in boost. If the context is not `constexpr` the functionality will be directly from the STL implementation of `<cmath>` used by the compiler. All functions that take an `Integer` type and return a `double` simply cast the `Integer` argument to a `double`. All of the following functions require C++17 or greater. [heading Synopsis] `` #include <boost/math/ccmath/ccmath.hpp> `` namespace boost::math::ccmath { template <typename T> inline constexpr bool isinf(T x); template <typename T> inline constexpr bool isnan(T x); template <typename Real> inline constexpr Real sqrt(Real x); template <typename Integer> inline constexpr double sqrt(Integer x); template <typename T> inline constexpr T abs(T x); template <typename T, std::enable_if_t<std::is_unsigned_v<T>, bool> = true> inline constexpr int abs(T x); template <typename T> inline constexpr T fabs(T x); template <typename T> inline constexpr bool isfinite(T x); template <typename T> inline constexpr bool isnormal(T x); template <typename T> inline constexpr int fpclassify(T x); template <typename Real> inline constexpr Real frexp(Real arg, int* exp); template <typename Integer> inline constexpr double frexp(Integer arg, int* exp); template <typename Real> inline constexpr Real ldexp(Real arg, int exp); template <typename Integer> inline constexpr double ldexp(Integer arg, int exp); template <typename Integer> struct div_t {Integer quot; Integer rem;}; template <typename Integer> inline constexpr div_t<Integer> div(Integer x, Integer y); template <typename Real> inline constexpr Real logb(Real arg); template <typename Integer> inline constexpr double logb(Integer arg); template <typename T> inline constexpr int ilogb(T arg); template <typename Real> inline constexpr Real scalbn(Real x, int exp) noexcept template <typename Integer> inline constexpr double scalbn(Integer x, int exp) noexcept template <typename Real> inline constexpr Real scalbln(Real x, long exp) noexcept template <typename Integer> inline constexpr double scalbln(Integer x, long exp) noexcept template <typename Real> inline constexpr Real floor(Real arg) noexcept template <typename Integer> inline constexpr double floor(Integer arg) noexcept template <typename Real> inline constexpr Real ceil(Real arg) noexcept template <typename Integer> inline constexpr double ceil(Integer arg) noexcept template <typename Real> inline constexpr Real trunc(Real arg) noexcept template <typename Integer> inline constexpr double trunc(Integer arg) noexcept template <typename Real> inline constexpr Real modf(Real x, Real* iptr) noexcept template <typename Real> inline constexpr Real round(Real arg) noexcept template <typename Integer> inline constexpr double round(Integer arg) noexcept template <typename T> inline constexpr long lround(T arg) template <typename T> inline constexpr long long llround(T arg) template <typename Real> inline constexpr Real fmod(Real x, Real y) noexcept template <typename Arithmetic1, typename Arithmetic2> inline constexpr Promoted fmod(Arithmetic1 x, Arithmetic2 y) noexcept The Promoted return type will have at least double prescision, but be up to the highest precision argument. template <typename Real> inline constexpr Real remainder(Real x, Real y) noexcept template <typename Arithmetic1, typename Arithmetic2> inline constexpr Promoted remainder(Arithmetic1 x, Arithmetic2 y) noexcept template <typename Real> inline constexpr Real copysign(Real mag, Real sgn) noexcept template <typename Arithmetic1, typename Arithmetic2> inline constexpr Promoted copysign(Arithmetic1 mag, Arithmetic2 sgn) noexcept template <typename Real> inline constexpr Real hypot(Real x, Real y) noexcept template <typename Arithmetic1, typename Arithmetic2> inline constexpr Promoted hypot(Arithmetic1 x, Arithmetic2 y) noexcept template <typename Real> inline constexpr Real fdim(Real x, Real y) noexcept template <typename Arithmetic1, typename Arithmetic2> inline constexpr Promoted fdim(Arithmetic1 x, Arithmetic2 y) noexcept template <typename Real> inline constexpr Real fmax(Real x, Real y) noexcept template <typename Arithmetic1, typename Arithmetic2> inline constexpr Promoted fmax(Arithmetic1 x, Arithmetic2 y) noexcept template <typename Real> inline constexpr Real fmin(Real x, Real y) noexcept template <typename Arithmetic1, typename Arithmetic2> inline constexpr Promoted fmin(Arithmetic1 x, Arithmetic2 y) noexcept template <typename Arithmetic1, typename Arithmetic2 = Arithmetic1> inline constexpr bool isgreater(Arithmetic1 x, Arithmetic2 y) noexcept template <typename Arithmetic1, typename Arithmetic2 = Arithmetic1> inline constexpr bool isgreaterequal(Arithmetic1 x, Arithmetic2 y) noexcept template <typename Arithmetic1, typename Arithmetic2 = Arithmetic1> inline constexpr bool isless(Arithmetic1 x, Arithmetic2 y) noexcept template <typename Arithmetic1, typename Arithmetic2 = Arithmetic1> inline constexpr bool islessequal(Arithmetic1 x, Arithmetic2 y) noexcept template <typename T> inline constexpr bool isunordered(T x, T y) noexcept template <typename Real> inline constexpr Real fma(Real x, Real y, Real z) noexcept Requires compiling with fma flag template <typename Arithmetic1, typename Arithmetic2, typename Arithmetic3> inline constexpr Promoted fma(Arithmetic1 x, Arithmetic2 y, Arithmetic3 z) noexcept template <typename Arithmetic1, typename Arithmetic2> constexpr Promoted nextafter(Arithmetic1 from, Arithmetic2 to) template <typename T> constexpr Promoted nexttoward(T from, long double to) template <typename T> constexpr bool signbit(T arg) } // Namespaces [endsect] [/section:ccmath Constexpr CMath]