// stripped down version of Nicholas' Static Sky // hybrid lighting shader that exposed vector_insert_todo // bug vec4 xll_tex2Dlod(sampler2D s, vec4 coord) { return texture2DLod( s, coord.xy, coord.w); } mat3 xll_constructMat3_mf4x4( mat4 m) { return mat3( vec3( m[0]), vec3( m[1]), vec3( m[2])); } struct Lamp { vec4 posRange; vec4 colorImp; }; struct v2f { vec4 pos; vec3 diffuse; }; struct HybridAppData { vec4 vertex; vec4 tangent; vec3 normal; vec4 texcoord; vec4 bakedCol; vec2 bakedDir; }; uniform vec3 _WorldSpaceCameraPos; uniform vec4 _ProjectionParams; uniform vec4 _ScreenParams; uniform vec4 _ZBufferParams; uniform vec4 _WorldSpaceLightPos0; uniform mat4 _Object2World; uniform mat4 _World2Object; uniform float _RenderExposure; uniform vec2 _DynLampInfo_bufferSize; uniform sampler2D _DynLampInfo; uniform float LightVertOffset; uniform sampler2D LightVertTexture; uniform vec4 LightVertTextureSize; void CalcDynamicLight( in vec3 worldVert, in vec3 worldNorm, in Lamp lamp[4], inout vec3 hybridDir, inout vec3 hybridCol ) { vec4 atten; int i = 0; for ( ; (i < 4); (i++)) { vec3 lightToVert = (lamp[i].posRange.xyz - worldVert); float lengthSq = dot( lightToVert, lightToVert); vec3 lightToVertNorm = (lightToVert * inversesqrt(lengthSq)); atten[i] = (lengthSq * lamp[i].posRange.w); float nDotL = dot( lightToVertNorm, worldNorm); float weight = (atten[i] * nDotL); } int j = 0; for ( ; (j < 4); (j++)) { hybridCol += (lamp[j].colorImp.xyz * atten[j]); } } void LoadBakedLight( out vec3 hybridCol, out vec3 hybridDir ) { } vec4 DoSampleGPUBuffer( in sampler2D buffer, in vec2 coord, in vec2 dimensions ) { return xll_tex2Dlod( buffer, vec4( (coord / dimensions), 0.0, 0.0)); } void ReadLightArray3( in ivec4 lightIdx, out Lamp l0, out Lamp l1, out Lamp l2, out Lamp l3 ) { l0.posRange = DoSampleGPUBuffer( _DynLampInfo, vec2( float(lightIdx.x), 1.0), _DynLampInfo_bufferSize); l0.colorImp = DoSampleGPUBuffer( _DynLampInfo, vec2( float(lightIdx.x), 2.0), _DynLampInfo_bufferSize); l1.posRange = DoSampleGPUBuffer( _DynLampInfo, vec2( float(lightIdx.y), 1.0), _DynLampInfo_bufferSize); l1.colorImp = DoSampleGPUBuffer( _DynLampInfo, vec2( float(lightIdx.y), 2.0), _DynLampInfo_bufferSize); l2.posRange = DoSampleGPUBuffer( _DynLampInfo, vec2( float(lightIdx.z), 1.0), _DynLampInfo_bufferSize); l2.colorImp = DoSampleGPUBuffer( _DynLampInfo, vec2( float(lightIdx.z), 2.0), _DynLampInfo_bufferSize); l3.posRange = DoSampleGPUBuffer( _DynLampInfo, vec2( float(lightIdx.w), 1.0), _DynLampInfo_bufferSize); l3.colorImp = DoSampleGPUBuffer( _DynLampInfo, vec2( float(lightIdx.w), 2.0), _DynLampInfo_bufferSize); } void DoCalcHybridLight2( in vec3 worldVert, in vec3 worldNorm, out vec3 hybridCol, in vec4 bakedColor, in vec2 bakedDir ) { vec3 hybridDir; LoadBakedLight( hybridCol, hybridDir); ivec4 lightIdx = ivec4( int(worldVert.x), int(worldVert.y), int(worldVert.z), int((-worldVert.x))); Lamp l[4]; ReadLightArray3( lightIdx, l[0], l[1], l[2], l[3]); CalcDynamicLight( worldVert, worldNorm, l, hybridDir, hybridCol); } vec3 CalcDiffuseHybridLight( in vec3 worldVert, in vec3 worldNorm, in vec4 bakedColor, in vec2 bakedDir ) { vec3 hybridCol; DoCalcHybridLight2( worldVert, worldNorm, hybridCol, bakedColor, bakedDir); return hybridCol; } v2f vert( in HybridAppData v ) { v2f o; vec3 worldVert = (_Object2World * v.vertex).xyz; vec3 worldNorm = normalize((xll_constructMat3_mf4x4( _Object2World) * v.normal.xyz)); o.diffuse = CalcDiffuseHybridLight( worldVert, worldNorm, v.bakedCol, v.bakedDir); o.pos = (gl_ModelViewProjectionMatrix * v.vertex); return o; } attribute vec4 TANGENT; varying vec3 xlv_TEXCOORD2; void main() { v2f xl_retval; HybridAppData xlt_v; xlt_v.vertex = vec4(gl_Vertex); xlt_v.tangent = vec4(TANGENT); xlt_v.normal = vec3(gl_Normal); xlt_v.texcoord = vec4(gl_MultiTexCoord0); xlt_v.bakedCol = vec4(gl_Color); xlt_v.bakedDir = vec2(gl_MultiTexCoord1); xl_retval = vert( xlt_v); gl_Position = vec4(xl_retval.pos); xlv_TEXCOORD2 = vec3(xl_retval.diffuse); }