
Basic Compression Library

Manual

API version 1.1
December 25, 2004

c©2003-2004 Marcus Geelnard

Summary

This document describes the algorithms used in the Basic Compression Library, and how to use the
library interface functions.

i

Contents

1 Introduction 1
1.1 Background. 1
1.2 The library philosophy. 1

2 The Compression Algorithms 2
2.1 RLE . 2

2.1.1 Principle . 2
2.1.2 Implementation. 2

2.2 Huffman. 3
2.2.1 Principle . 3
2.2.2 Implementation. 4

2.3 Rice . 4
2.3.1 Principle . 4
2.3.2 Implementation. 6

2.4 Lempel-Ziv (LZ77) . 7
2.4.1 Principle . 7
2.4.2 Implementation. 7

3 Compiling 9

4 Library API Reference 10
4.1 RLE_Compress. .10
4.2 RLE_Uncompress. .10
4.3 Huffman_Compress. .10
4.4 Huffman_Uncompress. .11
4.5 Rice_Compress. .11
4.6 Rice_Uncompress. .11
4.7 LZ_Compress. .12
4.8 LZ_CompressFast. .12
4.9 LZ_Uncompress .12

5 License 13

ii

Basic Compression Library Manual API version 1.1 Page 1/13

Chapter 1

Introduction

1.1 Background

This is a library of well known compression algorithms. They are not intended to serve as competitors
to advanced general purpose compression tools, but rather as building blocks for specialized
compression algorithms. A typical example is the compression of digitized media (such as images or
audio), for which you usually have lots of apriori information, and can taylor an efficient method based
on entropy reduction (e.g. differentiation) followed by simple entropy coding (e.g. Huffman coding).

In many cases entropy reduction results in data that is NOT easily compressed with advanced dictionary
based entropy coders, such as gzip or bzip2, since the data often becomes very noisy. Even a simple
Huffman coder can usually give better compression results than the most advanced dictionary based
coders under these circumstances.

1.2 The library philosophy

All compression algorithms are represented by a coder and a decoder (a compressor and a
decompressor), often referred to as a CODEC.

All coders and decoders work on preallocated memory buffers, and do not rely on any internal memory
allocation or file I/O. In addition, all library functions are 100% reentrant.

No data integrity checking is performed within the library (e.g. there are no CRCs stored in the
compressed data streams, nor any information about the size of the uncompressed data). This kind of
functionality is left to the user of the library.

The entire library is written in portable ANSI C code. The code should work identically on 32-bit and
64-bit architectures, and on both little endian and big endian systems (with the exception that the Rice
coder/decoder imports/exports data in machine native endian format).

Basic Compression Library Manual API version 1.1 Page 2/13

Chapter 2

The Compression Algorithms

This chapter briefly explains each compression algorithm, as it has been implemented in the Basic
Compression Library. For more in depth technical information, see the source code and a decent
resource on compression algorithms.

2.1 RLE

RLE, or Run Length Encoding, is a very simple method for lossless compression. It simply replaces
repeated bytes with a short description of which byte to repeat, and how many times to repeat it.
Though simple and obviously very inefficient fore general purpose compression, it can be very useful at
times (it is used in JPEG compression, for instance).

2.1.1 Principle

An example of how a run length encoding algorithm can encode a data stream is shown in figure2.1,
where six occurrences of the symbol ’93’ have been replaced with three bytes: a marker byte (’0’ in this
case), the repeat count (’6’), and the symbol itself (’93’).

When the RLE decoder encounters the symbol ’0’, which is used as the marker byte, it will use the
following two bytes to determine which symbol to output and how many times to repeat the symbol.

2.1.2 Implementation

There are several different ways to do RLE. The particular method implemented in the Basic
Compression Library is a very efficient one. Instead of coding runs for both repeating and
non-repeating sections, a special marker byte is used to indicate the start of a repeating section.

12 65 14 52 53 93 93 93 93 93 93 32

...is encoded as...

12 65 14 52 53 0 6 93 32

Figure 2.1: The principle of run lenght encoding.

Basic Compression Library Manual API version 1.1 Page 3/13

Non-repeating sections can thus have any length without being interrupted by control bytes, except for
the rare case when the special marker byte appears in the non-repeating section (which is coded with at
most two bytes). For optimal efficiency, the marker byte is chosen as the least frequent (perhaps even
non-existent) symbol in the input stream.

Repeating runs can be as long as 32768 bytes. Runs shorter than 129 bytes require three bytes for
coding (marker + count + symbol), whereas runs longer than 128 bytes require four bytes for coding
(marker + counthi|0x80 + countlo + symbol). This is normally a win in compression, and it is very
seldom a loss of compression ratio compared to using a fixed coding of three bytes (which allows
coding a run of 256 bytes in just three bytes).

With this scheme, the worst case compression result is:outsize = 257
256 × insize + 1.

2.2 Huffman

Huffman encoding is one of the best methods for lossless compression. It replaces each symbol with an
alternate binary representation, whose length is determined by the frequency of the particular symbol.
Common symbols are represented by few bits, while uncommon symbols are represented by many bits.

The Huffman algorithm is optimal in the sense that changing any of the binary codings of any of the
symbols will result in a less compact representation. However, it does not deal with the ordering or
repetition of symbols or sequences of symbols.

2.2.1 Principle

I will not go into all the practical details about Huffman coding, but the basic principle is to find new
binary representations for each symbol so that common symbols use few bits per symbol, while
uncommon symbols use more bits per symbol.

The solution to this problem is, in short, to make a histogram of the uncompressed data stream in order
to find how common each symbol is. A binary tree is then created by recursively splitting this histogram
in halves, where each half in each recursion should weigh as much as the other half (the weight is∑N

k=1 symbolcountk, whereN is the number of symbols in the branch andsymbolcountk is the
number of occurrences of symbolk).

This tree serves two purposes:

1. The coder uses the tree to find the optimal representations for each symbol.

2. Thedecoder uses the tree to uniquely identify the start and stop of each code in the compressed
data stream: by traversing the tree from top to bottom while reading the compressed data bits,
selecting branches based on each individual bit in the data stream, the decoder knows that a
complete code has been read once a leaf node is reached.

Let us have a look at an example to make it more clear. Figure2.2shows an uncompressed data stream
consisting of ten bytes.

Based on the symbol frequencies, the Huffman coder comes up with the Huffman tree (figure2.4) and
the accompanying coded representation (figure2.3).

As you can see, common symbols are closer to the root node (the top of the figure), thus requiring fewer
bits for representation. Based on the found Huffman tree, the coder then encodes the data stream with
the alternate representation, as can be seen in2.5.

Basic Compression Library Manual API version 1.1 Page 4/13

The total size of the compressed data stream is 24 bits (three bytes), compared to the original 80 bits (10
bytes). Of course, we would have to store the actual Huffman tree too so that the decoder is able to
decode the compressed stream, which would probably make the true size of the compressed data stream
larger than the input stream in this case. This is a side effect of the relatively short data set used in this
example. For larger data sets, the overhead of the Huffman tree becomes negligible.

As an exercise, try decoding the compressed data stream by traversing the Huffman tree from top to
bottom, selecting left/right branches for each new bit in the compressed data stream. Each time a leaf
node is encountered, the corresponding byte is written to the decompressed output stream, and the tree
traversal starts over from the root again.

2.2.2 Implementation

The Huffman coder that can be found in the Basic Compression Library is a very straight forward
implementation.

Primary flaws with this primitive implementation are:

• Slow bit stream implementation

• Fairly slow decoding (slower than encoding)

• Maximum tree depth of 32 (the coder aborts if any code exceeds a size of 32 bits). If I am not
mistaking, this should not be possible unless the input buffer is larger than232 bytes, which is not
supported by the coder anyway (max232 − 1 bytes can be specified with an unsigned 32-bit
integer).

On the other hand, there are a few advantages of this implementation:

• The Huffman tree is stored in a very compact form, requiring only 12 bits per symbol (for 8 bit
symbols), meaning a maximum of 384 bytes overhead.

• The code should be fairly easy to follow.

The Huffman coder does quite well in situations where the data is noisy, in which case most dictionary
based coders run into problems.

2.3 Rice

For data consisting of large words (e.g. 16 or 32 bits) and mostly low data values, Rice coding can be
very successful at achieving a good compression ratio. This kind of data is typically audio or high
dynamic range images that has been pre-processed with some kind of prediction (such as delta to
neighboring samples).

Although Huffman coding should be optimal for this kind of data, it is not a very suitable method due to
several reasons (for instance, a 32-bit word size would require a 16 GB histogram buffer to encode the
Huffman tree). Therefor a more dynamic approach is more appropriate for data that consists of large
words.

2.3.1 Principle

The basic idea behind Rice coding is to store as many words as possible with less bits than in the
original representation (just as with Huffman coding). In fact, one can think of the Rice code as a fixed

Basic Compression Library Manual API version 1.1 Page 5/13

32 22 22 43 49 22 22 17 48 43

Figure 2.2: Uncompressed data stream, used as input to the Huffman coder.

Symbol Frequency Code
22 4 00
43 2 01
17 1 100
32 1 101
48 1 110
49 1 111

Figure 2.3: Symbol frequencies and encoding for the data stream in figure2.2.

22 43

17 32 48 49

10

0 1

0 1

10

0 1

Figure 2.4: Huffman tree for the data stream in figure2.2.

101 00 00 01 111 00 00 100 110 01

Figure 2.5: Compressed data stream.

Basic Compression Library Manual API version 1.1 Page 6/13

Huffman code (i.e. the codes are not determined by the actual statistical content of the data, but by the
assumption that lower values are more common than higher values).

The coding is very simple: Encode the value X with X ’1’ bits followed by a ’0’ bit.

2.3.2 Implementation

There are some optimizations in the Rice implementation that can be found in the Basic Compression
Library:

1. The k least significant bits of each word are stored as is, and the N-k most significant bits are
encoded with Rice coding. k is chosen as the average number of bits for the previous few samples
in the stream. This usually makes the best use of the Rice coding, "hides" noise from the Rice
coder, and does not result in very long Rice codes for signals with varying dynamic range.

2. If the rice code becomes longer than a fixed threshold, T, an alternate coding is used: output T ’1’
bits, followed by floor(log2(X-T)) ’1’ bits, and one ’0’ bit, followed by X-T (represented by the
least significant floor(log2(X-T))-1 bits). This gives pretty efficient coding even for large values,
and prevents ridiculously long Rice codes (in the worst case scenario, a single Rice code for a
32-bit word may become as long as232 bits, or 512 MB).

If the threshold is set to 4, then the following is the resulting code table:

X bin Rice Thresholded Rice Difference
0 00000 0 0
1 00001 10 10
2 00010 110 110
3 00011 1110 1110
4 00100 11110 11110
5 00101 111110 111110
6 00110 1111110 11111100 +1
7 00111 11111110 11111101
8 01000 111111110 1111111000 +1
9 01001 1111111110 1111111001
10 01010 11111111110 1111111010 -1
11 01011 111111111110 1111111011 -2
12 01100 1111111111110 111111110000
13 01101 11111111111110 111111110001 -1
14 01110 111111111111110 111111110010 -2
15 01111 1111111111111110 111111110011 -3
16 10000 11111111111111110 111111110100 -4
17 10001 111111111111111110 111111110101 -5
18 10010 1111111111111111110 111111110110 -6
19 10011 11111111111111111110 111111110111 -7
20 10100 11111111111111111111011111111100000 -5

As you can see, only two codes result in a worse representation with the threshold method used in
this implementation. The rest of the codes result in shorter or equally short codes as for standard
Rice coding.

3. In the worst case scenario, the output buffer may grow by several orders of magnitude compared
to the input buffer. Therefor the Rice coder in this implementation aborts if the output becomes

Basic Compression Library Manual API version 1.1 Page 7/13

larger than the input by simply making a copy of the input buffer to the output buffer, with a
leading zero byte (making the output at most one byte larger than the input).

2.4 Lempel-Ziv (LZ77)

There are many different variants of the Lempel-Ziv compression scheme. The Basic Compression
Library has a fairly straight forward implementation of the LZ77 algorithm (Lempel-Ziv, 1977) that
performs very well, while the source code should be quite easy to follow.

The LZ coder can be used for general purpose compression, and performs exceptionally well for
compressing text. It can also be used in combination with the provided RLE and Huffman coders (in the
order: RLE, LZ, Huffman) to gain some extra compression in most situations.

2.4.1 Principle

The idea behind the Lempel-Ziv compression algorithm is to take the RLE algorithm a few steps further
by replacing sequences of bytes with references to previous occurrences of the same sequences.

For simplicity, the algorithm can be thought of in terms of string matching. For instance, in written text
certain strings tend to occur quite often, and can be represented by pointers to earlier occurrences of the
string in the text. The idea is, of course, that pointers or references to strings are shorter than the strings
themselves.

For instance, in the previous paragraph the string “string ” is quite common, and replacing all
occurrences but the first of that string with references would gain several bytes of saved storage.

A string reference is typically represented by:

• A unique marker.

• An offset count.

• A string length.

Depending on the coding scheme a reference can either have a fixed length or a variable length. The
latter is often preferred since that allows the coder to trade reference size for string size (i.e. it may be
worth the increased size in the reference representation if the string is long enough).

2.4.2 Implementation

One of the problems with LZ77 is that the algorithm requires exhaustive string matching. For every
single byte in the input data stream, every previous byte in the stream has to be considered as a possible
starting point for a matching string, which means that the compressor is very slow.

Another problem is that it is not very easy to tune the representation of a string reference for optimal
compression. For instance, one has to decide if all references and all non-compressed bytes should
occur on byte boundaries in the compressed stream or not.

The Basic Compression Library uses a very straight forward implementation that guarantees that all
symbols and references are byte aligned, thus sacrificing compression ratio, and the string matching
routines are not very optimized (there are no caches, history buffers or other similar tricks to gain
speed), which means that the routines areveryslow.

Basic Compression Library Manual API version 1.1 Page 8/13

On the other hand, the decompression routines are very simple and fast.

An attempt to speed up the LZ77 coder has been made, which uses an index array that speeds up the
string matching process by a fair amount. Still, it is much slower than any conventional compression
program or library.1

1On a 2 GHz CPU, the compression speed is usually in the order of 40 KB/s

Basic Compression Library Manual API version 1.1 Page 9/13

Chapter 3

Compiling

There is a Makefile included for the GNU C compiler (gcc). Just runmake from thesrc directory, and
you will get a file calledlibbcl.a , which is a static link library that you can copy to your compiler’s
lib directory. The library has been compiled with MinGW 2.0 under Windows 2000 without any
problems, and it should compile under any environment with GCC support out of the box (e.g. Linux,
Mac OS X, DOS/DJGPP, etc).

To compile the Basic Compression Library with an alternate compiler, you can either change the
Makefile as appropriate, or simply add the .c/.h files to your own project.

Basic Compression Library Manual API version 1.1 Page 10/13

Chapter 4

Library API Reference

All functions act on input and output buffers, which contain any kind of binary data. All sizes are given
in number of bytes. The output buffer usually has to be slightly larger than the input buffer, in order to
accommodate potential overhead if the input data is difficult to compress.

4.1 RLE_Compress

Syntax:� �
outsize = RLE_Compress(in,out,insize)� �
outsize Size of output buffer after compression
in Pointer to the input buffer (uncompressed data)
out Pointer to the output buffer (compressed data)
insize Size of input buffer

The output buffer must be able to holdinsize× 257
256 + 1 bytes.

4.2 RLE_Uncompress

Syntax:� �
RLE_Uncompress(in,out,insize)� �
in Pointer to the input buffer (compressed data)
out Pointer to the output buffer (uncompressed data)
insize Size of input buffer

The output buffer must be able to hold the entire uncompressed data stream.

4.3 Huffman_Compress

Syntax:� �
outsize = Huffman_Compress(in,out,insize)� �

Basic Compression Library Manual API version 1.1 Page 11/13

outsize Size of output buffer after compression
in Pointer to the input buffer (uncompressed data)
out Pointer to the output buffer (compressed data)
insize Size of input buffer

The output buffer must be able to holdinsize× 101
100 + 384 bytes.

4.4 Huffman_Uncompress

Syntax:� �
Huffman_Uncompress(in,out,insize,outsize)� �
in Pointer to the input buffer (compressed data)
out Pointer to the output buffer (uncompressed data)
insize Size of input buffer
outsize Size of output buffer

The output buffer must be able to holdoutsize bytes.

4.5 Rice_Compress

Syntax:� �
outsize = Rice_Compress(in,out,insize,format)� �
outsize Size of output buffer after compression (in bytes)
in Pointer to the input buffer (uncompressed data)
out Pointer to the output buffer (compressed data)
insize Size of input buffer (in bytes)
format Word format (see rice.h)

The output buffer must be able to holdinsize + 1 bytes.

4.6 Rice_Uncompress

Syntax:� �
Rice_Uncompress(in,out,insize,outsize,format)� �
in Pointer to the input buffer (compressed data)
out Pointer to the output buffer (uncompressed data)
insize Size of input buffer (in bytes)
outsize Size of output buffer (in bytes)
format Word format (see rice.h)

The output buffer must be able to holdoutsize bytes.

Basic Compression Library Manual API version 1.1 Page 12/13

4.7 LZ_Compress

Syntax:� �
outsize = LZ_Compress(in,out,insize)� �
outsize Size of output buffer after compression
in Pointer to the input buffer (uncompressed data)
out Pointer to the output buffer (compressed data)
insize Size of input buffer

The output buffer must be able to holdinsize× 257
256 + 1 bytes.

4.8 LZ_CompressFast

Syntax:� �
outsize = LZ_Compress(in,out,insize,work)� �
outsize Size of output buffer after compression
in Pointer to the input buffer (uncompressed data)
out Pointer to the output buffer (compressed data)
insize Size of input buffer
work Pointer to a temporary buffer (internal working buffer)

The output buffer must be able to holdinsize× 257
256 + 1 bytes, and the work buffer must be able to hold

insize + 65536 unsigned integers.

4.9 LZ_Uncompress

Syntax:� �
LZ_Uncompress(in,out,insize)� �
in Pointer to the input buffer (compressed data)
out Pointer to the output buffer (uncompressed data)
insize Size of input buffer

The output buffer must be able to hold the entire uncompressed data stream.

Basic Compression Library Manual API version 1.1 Page 13/13

Chapter 5

License

Copyright c© 2003-2004 Marcus Geelnard

This software is provided ’as-is’, without any express or implied warranty. In no event will the authors
be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the
original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented as being
the original software.

3. This notice may not be removed or altered from any source distribution.

	1 Introduction
	1.1 Background
	1.2 The library philosophy

	2 The Compression Algorithms
	2.1 RLE
	2.1.1 Principle
	2.1.2 Implementation

	2.2 Huffman
	2.2.1 Principle
	2.2.2 Implementation

	2.3 Rice
	2.3.1 Principle
	2.3.2 Implementation

	2.4 Lempel-Ziv (LZ77)
	2.4.1 Principle
	2.4.2 Implementation

	3 Compiling
	4 Library API Reference
	4.1 RLE_Compress
	4.2 RLE_Uncompress
	4.3 Huffman_Compress
	4.4 Huffman_Uncompress
	4.5 Rice_Compress
	4.6 Rice_Uncompress
	4.7 LZ_Compress
	4.8 LZ_CompressFast
	4.9 LZ_Uncompress

	5 License

