Home | Libraries | People | FAQ | More |
template<class Real> class exp_sinh { public: exp_sinh(size_t max_refinements = 9); template<class F> auto integrate(const F f, Real a, Real b, Real tol = sqrt(std::numeric_limits<Real>::epsilon()), Real* error = nullptr, Real* L1 = nullptr, size_t* levels = nullptr)->decltype(std::declval<F>()(std::declval<Real>())) const; template<class F> auto integrate(const F f, Real tol = sqrt(std::numeric_limits<Real>::epsilon()), Real* error = nullptr, Real* L1 = nullptr, size_t* levels = nullptr)->decltype(std::declval<F>()(std::declval<Real>())) const; };
For half-infinite intervals, the exp-sinh
quadrature
is provided:
exp_sinh<double> integrator; auto f = [](double x) { return exp(-3*x); }; double termination = sqrt(std::numeric_limits<double>::epsilon()); double error; double L1; double Q = integrator.integrate(f, termination, &error, &L1);
The native integration range of this integrator is (0, ∞), but we also support /(a, ∞), (-∞, 0)/ and /(-∞, b)/ via argument transformations.
Endpoint singularities and complex-valued integrands are supported by exp-sinh
.
For example, the modified Bessel function K can be represented via:
Which we can code up as:
template <class Complex> Complex bessel_K(Complex alpha, Complex z) { typedef typename Complex::value_type value_type; using std::cosh; using std::exp; auto f = [&, alpha, z](value_type t) { value_type ct = cosh(t); if (ct > log(std::numeric_limits<value_type>::max())) return Complex(0); return exp(-z * ct) * cosh(alpha * t); }; boost::math::quadrature::exp_sinh<value_type> integrator; return integrator.integrate(f); }
The only wrinkle in the above code is the need to check for large cosh(t)
in which case we assume that exp(-x
cosh(t))
tends
to zero faster than cosh(alpha x)
tends
to infinity and return 0
. Without
that check we end up with 0 * Infinity
as the result (a NaN).