-
Beals, Richard, and Roderick Wong. Special functions: a graduate
text. Vol. 126. Cambridge University Press, 2010.
-
Pearson, John W., Sheehan Olver, and Mason A. Porter. Numerical
methods for the computation of the confluent and Gauss hypergeometric
functions. Numerical Algorithms 74.3 (2017): 821-866.
-
Luke, Yudell L. Algorithms for Rational Approximations for
a Confluent Hypergeometric Function II. MISSOURI UNIV KANSAS
CITY DEPT OF MATHEMATICS, 1976.
-
Derezinski, Jan. Hypergeometric type functions and their symmetries.
Annales Henri Poincaré. Vol. 15. No. 8. Springer Basel, 2014.
-
Keith E. Muller Computing the confluent hypergeometric function,
M(a, b, x). Numer. Math. 90: 179-196 (2001).
-
Carlo Morosi, Livio Pizzocchero. On the expansion of the Kummer
function in terms of incomplete Gamma functions. Arch. Inequal.
Appl. 2 (2004), 49-72.
-
Jose Luis Lopez, Nico M. Temme. Asymptotics and numerics of
polynomials used in Tricomi and Buchholz expansions of Kummer functions.
Numerische Mathematik, August 2010.
-
Javier Sesma. The Temme's sum rule for confluent hypergeometric
functions revisited. Journal of Computational and Applied
Mathematics 163 (2004) 429-431.
-
Javier Segura, Nico M. Temme. Numerically satisfactory solutions
of Kummer recurrence relations. Numer. Math. (2008) 111:109-119.
-
Alfredo Deano, Javier Segura. Transitory Minimal Solutions
Of Hypergeometric Recursions And Pseudoconvergence of Associated Continued
Fractions. Mathematics of Computation, Volume 76, Number 258,
April 2007.
-
W. Gautschi. Computational aspects of three-term recurrence
relations. SIAM Review 9, no.1 (1967) 24-82.
-
W. Gautschi. Anomalous convergence of a continued fraction
for ratios of Kummer functions. Math. Comput., 31, no.140
(1977) 994-999.
-
British Association for the Advancement of Science: Bessel
functions, Part II, Mathematical Tables vol. X. Cambridge
(1952).