Home | Libraries | People | FAQ | More |
#include <boost/math/statistics/linear_regression.hpp> namespace boost::math::statistics { template<typename RandomAccessContainer> std::pair<Real, Real> simple_ordinary_least_squares(RandomAccessContainer const & x, RandomAccessContainer const & y); template<typename RandomAccessContainer> std::tuple<Real, Real, Real> simple_ordinary_least_squares_with_R_squared(RandomAccessContainer const & x, RandomAccessContainer const & y); }}}
A simple ordinary least squares finds the numbers c0 and c1 which minimizes the merit function
The predictive model generated from the minima of this functional is f(x) = c0 + c1 x.
It turns out that numerically, computing the numbers c0 and c1 is not quite trivial. See here for an explanation of some ways linear regression can go wrong. A better method of computing the model parameters uses one-pass, numerically stable methods to compute means, variances, and covariances, and then assembles the parameters from these.
An example usage of the simple linear regression is given below:
#include <vector> #include <iostream> #include <boost/math/statistics/linear_regression.hpp> int main() { using boost::math::statistics::simple_ordinary_least_squares; std::vector<double> x{1, 3, 7, 12}; std::vector<double> y{8,13, 26, 35}; auto [c0, c1] = simple_ordinary_least_squares(x, y); std::cout << "f(x) = " << c0 << " + " << c1 << "*x" << "\n"; std::cout << "f(2) = " << c0 + c1*2 << "\n"; } // Output: f(x) = 6.0742 + 2.50883*x f(2) = 11.0919
If, in addition, you wish to assess how appropriate linear regression is for your data, you can calculate R2 as well, via
auto [c0, c1, R2] = simple_ordinary_least_squares_with_R_squared(x, y);
It seems a number of definitions exist for R2; we use
The fit is good if R2 is close to 1.
There are two cases: When you want to compute R2, and when you don't want to simultaneously compute R2, although the cost of computing R2 is not high:
----------------------------------------------------------------------------------------------------------------- Benchmark Time Bytes/second ----------------------------------------------------------------------------------------------------------------- BMSimpleOrdinaryLeastSquares<float>/8 51.9 ns 588.476M/s BMSimpleOrdinaryLeastSquares<float>/16 112 ns 546.087M/s BMSimpleOrdinaryLeastSquares<float>/32 277 ns 440.823M/s BMSimpleOrdinaryLeastSquares<float>/64 608 ns 401.659M/s BMSimpleOrdinaryLeastSquares<float>/128 1276 ns 382.622M/s BMSimpleOrdinaryLeastSquares<float>/256 2606 ns 374.748M/s BMSimpleOrdinaryLeastSquares<float>/512 5266 ns 370.868M/s BMSimpleOrdinaryLeastSquares<float>/1024 10601 ns 368.466M/s BMSimpleOrdinaryLeastSquares<float>/2048 21243 ns 367.775M/s BMSimpleOrdinaryLeastSquares<float>/4096 42502 ns 367.631M/s BMSimpleOrdinaryLeastSquares<float>/8192 85239 ns 366.618M/s BMSimpleOrdinaryLeastSquares<float>/16384 169736 ns 368.22M/s BMSimpleOrdinaryLeastSquares<float>/32768 340220 ns 367.409M/s BMSimpleOrdinaryLeastSquares<float>/65536 678907 ns 368.247M/s BMSimpleOrdinaryLeastSquares<float>/131072 1357145 ns 368.422M/s BMSimpleOrdinaryLeastSquares<float>/262144 2720207 ns 367.635M/s BMSimpleOrdinaryLeastSquares<float>/524288 5430141 ns 368.332M/s BMSimpleOrdinaryLeastSquares<float>/1048576 10896708 ns 367.095M/s BMSimpleOrdinaryLeastSquares<float>/2097152 21797935 ns 367.047M/s BMSimpleOrdinaryLeastSquares<float>/4194304 43723059 ns 365.944M/s BMSimpleOrdinaryLeastSquares<float>/8388608 87229180 ns 366.864M/s BMSimpleOrdinaryLeastSquares<float>/16777216 174988864 ns 365.74M/s BMSimpleOrdinaryLeastSquares<float>_BigO 10.42 N BMSimpleOrdinaryLeastSquares<double>/8 52.4 ns 1.13779G/s BMSimpleOrdinaryLeastSquares<double>/16 122 ns 1002.14M/s BMSimpleOrdinaryLeastSquares<double>/32 307 ns 795.253M/s BMSimpleOrdinaryLeastSquares<double>/64 685 ns 712.628M/s BMSimpleOrdinaryLeastSquares<double>/128 1445 ns 675.805M/s BMSimpleOrdinaryLeastSquares<double>/256 2966 ns 658.488M/s BMSimpleOrdinaryLeastSquares<double>/512 6062 ns 644.35M/s BMSimpleOrdinaryLeastSquares<double>/1024 12166 ns 642.173M/s BMSimpleOrdinaryLeastSquares<double>/2048 24336 ns 642.064M/s BMSimpleOrdinaryLeastSquares<double>/4096 48862 ns 639.567M/s BMSimpleOrdinaryLeastSquares<double>/8192 98008 ns 637.708M/s BMSimpleOrdinaryLeastSquares<double>/16384 196394 ns 636.481M/s BMSimpleOrdinaryLeastSquares<double>/32768 392810 ns 636.434M/s BMSimpleOrdinaryLeastSquares<double>/65536 783903 ns 637.859M/s BMSimpleOrdinaryLeastSquares<double>/131072 1556741 ns 642.378M/s BMSimpleOrdinaryLeastSquares<double>/262144 3121184 ns 640.792M/s BMSimpleOrdinaryLeastSquares<double>/524288 6265681 ns 638.404M/s BMSimpleOrdinaryLeastSquares<double>/1048576 12421627 ns 644.076M/s BMSimpleOrdinaryLeastSquares<double>/2097152 24907611 ns 642.417M/s BMSimpleOrdinaryLeastSquares<double>/4194304 49773317 ns 642.934M/s BMSimpleOrdinaryLeastSquares<double>/8388608 100034750 ns 639.79M/s BMSimpleOrdinaryLeastSquares<double>/16777216 199477349 ns 641.685M/s BMSimpleOrdinaryLeastSquares<double>_BigO 11.90 N BMSimpleOrdinaryLeastSquares<double>_RMS 0 % BMSimpleOrdinaryLeastSquaresWRSquared<float>/8 69.2 ns 441.314M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>/16 147 ns 415.939M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>/32 356 ns 342.815M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>/64 736 ns 331.749M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>/128 1494 ns 326.765M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>/256 3161 ns 308.909M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>/512 6343 ns 307.94M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>/1024 12707 ns 307.409M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>/2048 25390 ns 307.699M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>/4096 50820 ns 307.455M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>/8192 101738 ns 307.161M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>/16384 203033 ns 307.835M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>/32768 403366 ns 309.894M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>/65536 767080 ns 325.911M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>/131072 1515010 ns 330.034M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>/262144 2965539 ns 337.21M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>/524288 5774329 ns 346.372M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>/1048576 11384267 ns 351.371M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>/2097152 22899097 ns 349.406M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>/4194304 45923903 ns 348.423M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>/8388608 92138186 ns 347.306M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>/16777216 183263471 ns 349.226M/s BMSimpleOrdinaryLeastSquaresWRSquared<float>_BigO 10.94 N BMSimpleOrdinaryLeastSquaresWRSquared<float>_RMS 1 % BMSimpleOrdinaryLeastSquaresWRSquared<double>/8 68.7 ns 887.806M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>/16 166 ns 734.816M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>/32 385 ns 633.918M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>/64 812 ns 601.394M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>/128 1774 ns 550.424M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>/256 3554 ns 549.562M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>/512 7151 ns 546.25M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>/1024 14335 ns 545.006M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>/2048 28608 ns 546.163M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>/4096 57228 ns 546.067M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>/8192 113732 ns 549.537M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>/16384 227686 ns 549.004M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>/32768 453989 ns 550.668M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>/65536 901696 ns 554.517M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>/131072 1771910 ns 564.365M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>/262144 3430961 ns 582.933M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>/524288 6751237 ns 592.511M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>/1048576 13544819 ns 590.639M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>/2097152 27331142 ns 585.422M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>/4194304 54944987 ns 582.425M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>/8388608 109574257 ns 584.087M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>/16777216 221449209 ns 578.003M/s BMSimpleOrdinaryLeastSquaresWRSquared<double>_BigO 13.17 N BMSimpleOrdinaryLeastSquaresWRSquared<double>_RMS 1 %